Файл: Пеноуз Роджер. Тени разума. В поисках науки о сознании.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 740
Скачиваний: 0
СОДЕРЖАНИЕ
1.2. Спасут ли роботы этот безумный мир?
1.3. Вычисление и сознательное мышление
1.5. Вычисление: нисходящие и восходящие процедуры
1.6. Противоречит ли точка зрения в тезису Черча—Тьюринга?
1.9. Невычислительные процессы
1.11. Обладают ли компьютеры правами и несут ли ответственность?
1.12. «Осознание», «понимание», «сознание», «интеллект»
1.13. Доказательство Джона Серла
1.14. Некоторые проблемы вычислительной модели
1.15. Свидетельствуют ли ограниченные возможности сегодняшнего ии в пользу ?
1.16. Доказательство на основании теоремы Гёделя
1.17. Платонизм или мистицизм?
1.18. Почему именно математическое понимание?
1.19. Какое отношение имеет теорема Гёделя к «бытовым» действиям?
1.20. Мысленная визуализация и виртуальная реальность
1.21. Является ли невычислимым математическое воображение?
2.1. Теорема Гёделя и машины Тьюринга
2.3. Незавершающиеся вычисления
2.4. Как убедиться в невозможности завершить вычисление?
2.5. Семейства вычислений; следствие Гёделя — Тьюринга
2.6. Возможные формальные возражения против
2.7. Некоторые более глубокие математические соображения
2.8. Условие -непротиворечивости
2.9. Формальные системы и алгоритмическое доказательство
2.10. Возможные формальные возражения против (продолжение)
Приложение а: геделизирующая машина тьюринга в явном виде
3 О невычислимости в математическом мышлении
1.16. Доказательство на основании теоремы Гёделя
Как можем мы быть уверены в том, что вышеописанное понимание не может, в сущности, быть сведено к набору вычислительных правил? Несколько позже (в главах 2 и 3) я приведу некоторые очень серьезные доводы в пользу того, что проявления
понимания (по крайней мере, определенных его видов) невозможно достоверно моделировать посредством каких угодно вычислений — ни нисходящего, ни восходящего типа, ни любой из их комбинаций. Таким образом, за реализацию присущей человеку способности к «пониманию» должна отвечать какая-то невычислительная деятельность мозга или разума. Напомним, что термином «невычислительный» в данном контексте мы характеризуем феномен, который невозможно эффективно моделировать с помощью какого угодно компьютера, основанного на логических принципах, общих для всех современных электронных или механических вычислительных устройств. При этом термин «невычислительная активность» вовсе не предполагает невозможности описать такую активность научными и, в частности, математическими методами. Он предполагает лишь то, что точки зрения оказываются не в состоянии объяснить, каким именно образом мы выполняем все те действия, которые представляют собой результат сознательной мыслительной деятельности.
Существует, по меньшей мере, логическая возможность того, что обладающий сознанием мозг (или сознательный разум) может функционировать в соответствии с такими невычислительными законами . Однако так ли это? Представленные в следующей главе рассуждения содержат, как мне кажется, весьма четкое доказательство наличия в нашем сознательном мышлении невычислительной составляющей. Основаны эти рассуждения на знаменитой и мощной теореме математической логики, сформулированной великим логиком, чехом по происхождению, Куртом Гёделем. Для моих целей будет вполне достаточно существенно упрощенного варианта этой теоремы, который не потребует от читателя слишком обширных познаний в математике (что касается математики, то я также позаимствую кое-что из одной важной идеи, высказанной несколько позднее Аланом Тьюрингом). Любой достаточно серьезно настроенный читатель без труда разберется в моих рассуждениях. Доказательства гёделевского типа, да еще и примененные в подобном контексте, подвергаются время от времени решительным нападкам. Вследствие этого у некоторых читателей может сложиться впечатление, что мое основанное на теореме Гёделя доказательство было полностью опровергнуто. Должен заметить, что это далеко не так. За прошедшие годы действительно выдвигалось множество контраргументов. Мишенью для многих из них послужило одно из самых первых таких доказательств (направленное в поддержку ментализма и против физикализма), предложенное оксфордским философом Джоном Лукасом [245]. Опираясь на результаты теоремы Гёделя, Лукас доказывал, что мыслительные процессы невозможно воспроизвести вычислительными методами. (Подобные соображения выдвигались и ранее; см., например, [270].) Мое доказательство, пусть и построенное на том же фундаменте, выдержано все же в несколько ином духе, нежели доказательство Лукаса; кроме того, в число моих задач не входила непременная поддержка ментализма. Я думаю, что моя формулировка способна лучше противостоять различным критическим замечаниям, выдвинутым в свое время против доказательства Лукаса, и во многих отношениях выявить их несостоятельность. Ниже (в главах 2 и 3) мы подробно рассмотрим все контраргументы, которые когда-либо попадались мне на глаза. Надеюсь, что мои сопутствующие комментарии не только помогут прояснить некоторые, похоже, широко распространившиеся заблуждения относительно смысла доказательства Гёделя, но и дополнят, по-видимому, неудовлетворительно краткое рассмотрение этого вопроса, предпринятое в НРК. Я намерен показать, что большая часть этих контраргументов произрастает, в сущности, из банальных недоразумений, тогда как остальные, основанные на более или менее осмысленных и требующих детального рассмотрения возражениях, представляют собой, в лучшем случае, не более чем возможные «лазейки» в духе взглядов при этом они не дают — в чем у нас еще будет возможность убедиться — сколько-нибудь правдоподобного объяснения действительным последствиям наличия у нас способности «понимать», да и в любом случае эти лазейки не представляют особой ценности для развития идеи ИИ. Так что тем, кто по-прежнему полагает, что все внешние проявления процессов сознательного мышления можно адекватно воспроизвести вычислительными методами, в рамках положений , я могу лишь порекомендовать повнимательнее следить за предлагаемой ниже аргументацией.
1.17. Платонизм или мистицизм?
Критики, впрочем, могут возразить, что отдельные выводы в рамках этого доказательства Гёделя следует рассматривать не иначе как «мистические», поскольку упомянутое доказательство, судя по всему, вынуждает нас принять либо точку зрения , либо точку зрения ; подобный взгляд, разумеется, не более приемлем, нежели любая из вышеупомянутых лазеек, полученных из теоремы Гёделя. Что касается , то здесь я, вообще говоря, полностью с критиками согласен. Мои собственные причины неприятия — точки зрения, настаивающей на полном бессилии науки перед тайною разума, — проистекают из осознания того факта, что только благодаря применению научных и, в частности, математических методов был достигнут хоть какой-то реальный прогресс в понимании происходящих в окружающем нас мире процессов. Более того, если мы и располагаем какими-то достоверными сведениями о разуме, то только о том разуме, который тесно связан с конкретным физическим объектом — мозгом, — причем различным состояниям разума четко соответствуют различные физические состояния мозга. По всей видимости, с теми или иными специфическими типами физической активности мозга можно ассоциировать и психические состояния сознания. Если бы не таинственные аспекты сознания, связанные с формированием «осознания» и, быть может, с проявлениями «свободы воли», которые пока что не поддаются физическому описанию, нам бы и в голову не пришло, что для объяснения разума, являющегося по всем признакам продуктом протекающих внутри мозга физических процессов, стандартных научных методов может и не хватить.
С другой стороны, следует понимать, что наука (и, в частности, математика) и сама по себе являет нам мир, исполненный тайн. Чем глубже мы проникаем в процессе научного познания в суть вещей, тем более фундаментальные тайны открываются нашему взору. Быть может, стоит в этой связи упомянуть и о том, что физики, более непосредственно знакомые с грловоломной и непостижимой манерой, в какой реально проявляет себя материя, склонны видеть мир в менее классически механистическом свете, нежели биологи. В главе 5 мы поговорим о некоторых наиболее таинственных аспектах квантового поведения, обнаруженных относительно недавно. Возможно, для полного «охвата» тайны разума нам придется несколько расширить границы того, что мы в настоящее время называем наукой, однако я не вижу причин напрочь отказываться от тех методов, которые так замечательно служили нам до сих пор. Таким образом, если гёделевские соображения подталкивают нас к принятию точки зрения в том или ином ее виде (а я полагаю, что так оно и есть), то нам поневоле придется принять и некоторые другие ее следствия. Иными словами, следуя этим путем, мы приходим, ни много ни мало, к объективному идеализму по Платону. Согласно учению Платона, математические концепции и математические истины существуют в их собственном, вполне реальном мире, в котором отсутствует течение времени и который не имеет физического местонахождения. Мир Платона — это идеальный мир совершенных форм, отличный от физического мира, но являющийся основой для его понимания. Он, кроме того, никак не связан с нашими несовершенными мысленными построениями, однако человеческий разум способен получить в некотором смысле непосредственный доступ в это платоново царство благодаря способности «осознавать» математические формы и рассуждать о них. Нашему «платоническому» восприятию, как вскоре выяснится, может иногда поспособствовать вычисление, однако в общем это восприятие вычислением не ограничено. Согласно такому платоническому подходу, именно способность «осознавать» математические концепции дает разуму мощь, далеко превосходящую все, чего можно добиться от устройства, работа которого основывается исключительно на вычислении.
1.18. Почему именно математическое понимание?
Все эти благоглупости, конечно, очень (или не очень) замечательны — так, несомненно, уже ворчат иные читатели. Однако какое отношение имеют все эти замысловатые проблемы математики и философии математики к большинству вопросов, непосредственно касающихся, например, искусственного интеллекта? В самом деле, многие философы и поборники ИИ придерживаются достаточно разумного мнения, суть которого сводится к тому, что теорема Гёделя, безусловно, имеет огромное значение в своем исходном контексте, т. е. в области математической логики, однако в отношении ИИ или философии разума актуальность ее, в лучшем случае, весьма и весьма ограничена. В конце концов, не так уж и часто мыслительная деятельность человека оказывается направлена на решение вопросов, относящихся к первоначальной области применимости рассуждений Гёделя — аксиоматическим основам математики. На это возражение я бы ответил так: но ведь практически всегда мыслительная деятельность человека требует участия сознания и понимания. Рассуждение же Гёделя я использую для того, чтобы показать, что человеческое понимание нельзя свести к алгоритмическим процессам. Если мне удастся показать справедливость этого утверждения в каком-либо конкретном контексте, то этого будет вполне достаточно. Продемонстрировав, что понимание каких-то математических процедур не поддается описанию с помощью вычислительных методов, мы тем самым докажем, что в нашем разуме происходит-таки что-то такое, что невозможно вычислить. А если так, то напрашивается вполне естественный вывод: невычислительная активность должна быть присуща и многим другим аспектам мыслительной деятельности. Вот и все, путь свободен!
Может показаться, что представленное в главе 2 математическое доказательство, устанавливающее необходимую нам форму теоремы Гёделя, не имеет прямого отношения к большинству аспектов сознания. В самом деле: что общего может быть у демонстрации невычислимости феномена понимания на примере определенных типов математических суждений с восприятием, например, красного цвета? Да и в большинстве других аспектов сознания математические соображения, похоже, не играют явно выраженной роли. К примеру, даже математики, как правило, не думают о математике, когда спят и видят сны! Судя по всему, сны видят и собаки, причем есть основания полагать, что они, до некоторой степени, осознают, что видят сон; и я склонен думать, что они наверняка осознают и происходящее с ними во время бодрствования. Однако собаки математикой не занимаются. Бесспорно, математические размышления — далеко не единственная деятельность живого организма, требующая участия сознания. Скажем больше: эта деятельность в высшей степени специализирована и характерна лишь для человека'. (И даже более того, я встречал циников, которые уверяли меня, что упомянутая деятельность характерна лишь для определенной, чрезвычайно редкой разновидности людей.) Феномен же сознания наблюдается повсеместно и присущ мыслительной деятельности как человека, так и большинства нечеловеческих форм жизни; сознанием, безусловно, в равной степени обладают и люди, далекие от математики, и математики-профессионалы, причем даже тогда, когда они математикой не занимаются (т. е. большую часть своей жизни). Математическое мышление составляет очень и очень малую область сознательной деятельности вообще, практикует его очень и очень незначительное меньшинство обладающих сознанием существ, да и то на протяжении очень и очень ограниченной части их сознательной жизни.