ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 30.07.2024
Просмотров: 94
Скачиваний: 0
Прошедшее через входную щель излучение падает на вогнутую дифракционную решетку 6 с переменным шагом и криволинейным штрихом. Решетка изготавливается на сферической поверхности, поэтому, помимо диспергирующих свойств, она обладает свойством фокусировать спектр. Применение переменного шага и криволинейного штриха значительно уменьшает аберрационные искажения вогнутой дифракционной решетки и позволяет получить высокое качество спектра во всем рабочем спектральном диапазоне.
Дифрагированный пучок фокусируется в плоскости выходной щели 7 монохроматора, расположенной над входной щелью 5. Сканирование осуществляется поворотом дифракционной решетки, при этом монохроматическое излучение различных длин волн проходит через выходную щель 7, линзу 8, контрольный или измеряемый образец, линзу 9 и с помощью поворотного зеркала 10 попадает на светочувствительный слой одного из фотоэлементов 11 или 12.
Для уменьшения рассеянного света и срезания высших порядков дифракции в спектрофотометре используются два светофильтра: из стекла ПС11 для работы в области 230 – 450 нм и из стекла ОС14 для работы в области 600 – 1100 нм. Смена светофильтров производится автоматически.
Линзы изготовлены из кварцевого стекла с высоким коэффициентом пропускания в ультрафиолетовой области спектра.
Для обеспечения работы спектрофотометра в широком диапазоне спектра используются два фотоэлемента и два источника излучения сплошного спектра. Сурьмяно-цезиевый фотоэлемент с окном из кварцевого стекла применяется для измерений в области спектра от 186 до 700 нм, кислородно-цезиевый фотоэлемент – для измерений в области спектра от 600 до 1100 нм. Длина волны, при которой следует переходить от измерений с одним фотоэлементом к измерениям с другим фотоэлементом, указывается в паспорте спектрофотометра.
Дейтериевая лампа предназначается для работы в области спектра от 190 до 350 нм, лампа накаливания – для работы в области спектра от 340 до 1100 нм.
Внешний вид спектрофотометр приведен на рис. 9. Он состоит из монохроматора 13, МПС 14, кюветного отделения 15, камеры 1б с фотоприемниками и усилителем и осветителя 17 с источниками излучения и стабилизатором.
Рис. 9. Внешний вид спектрофотометра СФ-46
Оптические и механические детали, входящие в монохроматор и закрытые защитным кожухом, блок питания МПС, а также отсчетное устройство 20 установки длин волн и переключатель 21 щели расположены на основании 22 (рис. 9). К этому основанию жестко крепится дополнительное основание 23, несущее на себе съемные части спектрофотометра – кюветное отделение и камеру с фотоприемниками и усилителем.
Дифракционная решетка установлена на столике, который может поворачиваться вокруг вертикальной оси при вращении рукоятки 25 (рис. 9). Движение от рукоятки передается шкиву, сидящему на одной оси с отсчетным устройством 20 установки длин волн. На той же оси находится цилиндрическая шестерня, передающая движение отсчетного устройства установки длин волн винту с гайкой; в плоскость гайки упирается регулировочный винт рычага, жестко соединенного со столиком решетки; движение гайки передается рычагу, который поворачивает столик с решеткой, осуществляя, таким образом, сканирование спектра.
Хроматография
Хроматогра́фия (от др.-греч. χρῶμα — цвет) — динамический сорбционный метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами — неподвижной (твердая фаза или жидкость, связанная на инертном носителе) и подвижной (газовая или жидкая фаза, элюент). Название метода связано с первыми экспериментами по хроматографии, в ходе которых разработчик метода Михаил Цвет разделял ярко окрашенные растительные пигменты.
История метода
Метод хроматографии был впервые применён русским учёным-ботаником Михаилом Семеновичем Цветом в 1900 году. Он использовал колонку, заполненную карбонатом кальция, для разделения пигментов растительного происхождения. Первое сообщение о разработке метода хроматографии было сделано Цветом 30 декабря 1901 года на XI Съезде естествоиспытателей и врачей в С.-Петербурге. Первая печатная работа по хроматографии была опубликована в 1903 году, в журнале Труды Варшавского общества естествоиспытателей. Впервые термин хроматография появился в двух печатных работах Цвета в 1906 году, опубликованных в немецком журнале Berichte der Deutschen Botanischen Gesellschaft. В 1907 году Цвет демонстрирует свой метод Немецкому Ботаническому обществу.
В 1910—1930 годы метод был незаслуженно забыт и практически не развивался.
В 1931 году Р. Кун, А. Винтерштейн и Е. Ледерер при помощи хроматографии выделили из сырого каротина α и β фракции в кристаллическом виде, чем продемонстрировали препаративную ценность метода.
В 1941 году А. Дж. П. Мартин и Р. Л. М. Синг разработали новую разновидность хроматографии, в основу которой легло различие в коэффициентах распределения разделяемых веществ между двумя несмешивающимися жидкостями. Метод получил название «распределительная хроматография».
В 1947 году Т. Б. Гапон, Е. Н. Гапон и Ф. М. Шемякин разработали метод «ионообменной хроматографии».
В 1952 году Дж. Мартину и Р. Сингу была присуждена Нобелевская премия в области химии за создание метода распределительной хроматографии.
С середины XX века и до наших дней хроматография интенсивно развивалась и стала одним из наиболее широко применяемых аналитических методов.
Терминология
Основные термины и понятия относящиеся к хроматографии, а также области их применения были систематизированы и унифицированы специальной комиссией ИЮПАК[1]. Согласно рекомендациям ИЮПАК, термин «хроматография» имеет три значения и используется для обозначения специального раздела химической науки, процесса а также метода.
Хроматография — наука о межмолекулярных взаимодействиях и переносе молекул или частиц в системе несмешивающихся и движущихся друг относительно друга фаз.
Хроматография — процесс дифференцированного многократного перераспределения веществ или частиц между несмешивающимися и движущимися относительно друг друга фазами, приводящий к обособлению и концентрационных зон индивидуальных компонентов исходных смесей этих веществ или частиц.
Хроматография — метод разделения смесей веществ или частиц основанный на различиях в скоростях их перемещения в системе несмешивающихся и движущихся относительно друг друга фаз.
Колонка — содержит хроматографический сорбент, выполняет функцию разделения смеси на индивидуальные компоненты.
Элюент — подвижная фаза: газ, жидкость или (реже) сверхкритический флюид.
Неподвижная фаза — твердая фаза или жидкость, связанная на инертном носителе, в адсорбционной хроматографии —сорбент.
Хроматограмма — результат регистрирования зависимости концентрации компонентов на выходе из колонки от времени.
Детектор — устройство для регистрации концентрации компонентов смеси на выходе из колонки.
Хроматограф — прибор для проведения хроматографии.
[Править]Класcификация видов хроматографии
[править]По агрегатному состоянию фаз
-
Газовая хроматография
Газо-жидкостная хроматография
Газо-твёрдофазная хроматография
-
Жидкостная хроматография
Жидкостно-жидкостная хроматография
Жидкостно-твёрдофазная хроматография
Жидкостно-гелевая хроматография
Сверхкритическая флюидная хроматография
По механизму взаимодействия
Распределительная хроматография
Ионообменная хроматография
Адсорбционная хроматография
Эксклюзионная хроматография
Аффинная хроматография
Осадочная хроматография
Адсорбционно-комплексообразовательная хроматография
По цели проведения
Аналитическая хроматография
Препаративная хроматография
Промышленная хроматография
По способу ввода пробы
Элюентная хроматография (проявительная, редк. элютивная)
Наиболее часто используемый вариант проведения аналитической хроматографии. Анализируемую смесь вводят в поток элюента в виде импульса . В колонке смесь разделяется на отдельные компоненты, между которыми находятся зоны подвижной фазы.
Фронтальная хроматография
Смесь непрерывно подают в колонку, при этом на выходе из колонки только первый, наименее удерживаемый компонент можно выделить в чистом виде. Остальные зоны содержат 2 и более компонентов. Родственный метод — твердофазная экстракция(сорбционное концентрирование).
Вытеснительная хроматография
В колонку после подачи разделяемой смеси вводят специальное вещество-вытеснитель, которое удерживается сильнее любого из компонентов смеси. Образуются примыкающие друг к другу зоны разделяемых веществ.
]Отдельные виды хроматографии
Высокоэффективная жидкостная хроматография
Тонкослойная хроматография
Газовая хроматография с программированием температуры
Хроматермография
Газовая хроматография с программированием расхода газ-носителя
Газовая хроматография с программированием давления газ-носителя
Хромабарография
Хроматофокусирование