Добавлен: 01.04.2023
Просмотров: 136
Скачиваний: 2
СОДЕРЖАНИЕ
2. История создания компьютера.
3. Основные компоненты современного ПК, их виды и характеристики.
3.2.4 Жесткий диск и оптический привод.
4. Назначение и группы периферийных устройств.
4.1 Периферийные устройства ввода-вывода информации. Внешние накопители.
5.Периферийные устройства вывода информации.
5.3 Плоттеры (графопостроители).
6. Периферийные устройства ввода информации.
– внедряемые: Mini-ITXи Nano-ITX, Pico-ITX, BTX, MicroBTX и PicoBTX.
Существуют системные платы, не соответствующие никаким из существующих форм-факторов. Обычно это обусловлено либо тем, что производимый компьютер узкоспециализирован, либо желанием производителя системной платы самостоятельно производить и периферийные устройства к ней, либо невозможностью использования стандартных компонентов (так называемый «бренд»), например AppleComputer, Commodore, SiliconGraphics, HewlettPackard, Compaq чаще других игнорировали стандарты; кроме того в нынешнем виде распределённый рынок производства сформировался только к 1987 году, когда многие производители уже создали собственные платформы.
3.2.3 Оперативная память.
Оперативная память – энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции. Передача данных в/из оперативную память процессором производится непосредственно, либо через сверхбыструю память. Оперативное запоминающее устройство (ОЗУ) – техническое устройство, реализующее функции оперативной памяти. ОЗУ обычно бывает 1 Гб, 2 Гб, 4 Гб,8 Гб, 16 Гб.
Оперативная память бывает двух типов: динамического и статического.
Память динамического типа (Dynamic Random Access Memory – DRAM).
DRAM – экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов).
Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры.
Второй существенный минус – конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость. За то, что разряды в ней хранятся не статически, а «стекают» динамически во времени, память на конденсаторах получила своё название динамическая память.
В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов для восстановления необходимо «регенерировать» через определённый интервал времени. Регенерация выполняется центральным микропроцессором или контроллером памяти, за определённое количество тактов считывания при адресации по строкам. Так как для регенерации памяти периодически приостанавливаются все операции с памятью, это значительно снижает производительность данного вида ОЗУ.
Памятьстатическоготипа (Static Random Access Memory – SRAM).
SRAM – ОЗУ, которое не надо регенерировать (и обычно схемотехнически собранное на триггерах), называется статической памятью с произвольным доступом или просто статической памятью.
Достоинство этого вида памяти – скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро.
Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. Используется для организации сверхбыстрого ОЗУ, критичного к скорости работы.
3.2.4 Жесткий диск и оптический привод.
Накопитель на жестких магнитных дисках или НЖМД (Hard (Magnetic) DiskDrive, HDD, HMDD, жёсткий диск, в компьютерном сленге «винчестер», «винт», «хард», «харддиск») – устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.
В отличие от «гибкого» диска (дискеты), информация на жестком диске записывается на алюминиевые или стеклянные пластины, покрытые слоем ферромагнитного материала, чаще всего двуокисихрома. На жестких дисках используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.
Также, в отличие от гибкого диска, носитель информации совмещён с накопителем, приводом и блоком электроники и (в персональных компьютерах в подавляющем количестве случаев) обычно установлен внутри системного блока компьютера.
Основные характеристики жестких дисков.
Интерфейс – совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии, и правил (протокола) обмена.
Ёмкость – количество данных, которые могут храниться накопителем. С момента создания первых жёстких дисков в результате непрерывного совершенствования технологии записи данных их максимально возможная ёмкость непрерывно увеличивается. Ёмкость современных жёстких дисков (с форм-фактором 3,5 дюйма) достигает 3000 ГБ и более. В отличие от принятой в информатике системы приставок, обозначающих кратную 1024, производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 Гб.
Физический размер (форм-фактор) – почти все современные накопители для персональных компьютеров и серверов имеют ширину либо 3,5, либо 2,5 дюйма – под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1,8 дюйма, 1,3 дюйма, 1 дюйм и 0,85 дюйма. Прекращено проиводство накопителей в форм-факторах 8 и 5,25 дюймов.
Время произвольного доступа – время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик – от 2,5 до 16 мс. Как правило, минимальным временем обладают серверные диски, самым большим из актуальных – диски для портативных устройств (Seagate Momentus 5400.3 – 12,5).
Скорость вращения шпинделя – количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции). Увеличению скорости вращения шпинделя в винчестерах для ноутбуков препятствует гироскопический эффект, влияние которого пренебрежимо мало в неподвижных компьютерах.
Надёжность – определяется как среднее время наработки на отказ (MTBF). Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T.
Количество операций ввода-вывода в секунду – у современных дисков это около 50 оп/с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.
Потребление энергии – важный фактор для мобильных устройств.
Уровень шума – шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.
Сопротивляемость ударам – сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.
Скорость передачи данных при последовательном доступе: внутренняя зона диска: от 44,2 до 74,5 Мб/с; внешняя зона диска: от 60,0 до 111,4 Мб/с.
Объём буфера – буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В современных дисках он обычно варьируется от 8 до 64 Мб.
На сегодняшний день большая часть всех винчестеров производится всего несколькими компаниями: Seagate, WesternDigital, Samsung, а также ранее принадлежавшим IBM подразделением по производству дисков фирмы Hitachi. Fujitsu продолжает выпускать жёсткие диски для ноутбуков и SCSI-диски, но покинула массовый рынок в 2001 году (в 2009 году производство жёстких дисков было полностью передано компании Toshiba). Toshiba является основным производителем 2,5- и 1,8-дюймовых жестких дисков для ноутбуков.
Достаточно яркий след в истории жёстких дисков оставила компания Quantum. Одним из лидеров в производстве дисков являлась компания Maxtor. В 2001 году Maxtor выкупила подразделение жёстких дисков компании Quantum. В 2006 году состоялось слияние Seagate и Maxtor. В середине 1990-х годов существовала компания Conner, которую купила Seagate. В первой половине 1990-х существовала фирма Micropolis, производившая очень дорогие диски premium-класса. Но при выпуске первых в отрасли винчестеров на 7200 об/мин ею были использованы некачественные подшипники главного вала, поставлявшиеся фирмой Nidec, и Micropolis понесла фатальные убытки на возвратах, разорилась и была на корню куплена вышеупомянутой Seagate.
В настоящее время, в связи с продвижением на рынок внешних накопителей и развитием технологий типа SSD (Solid State Drive ), количество фирм предлагающих готовые решения вновь возросло.
Оптический привод – устройство, имеющее механическую составляющую, управляемую электронной схемой, и предназначенное для считывания и, (в некоторых моделях), записи информации с оптических носителей информации в виде пластикового диска с отверстием в центре; процесс считывания/записи информации с диска осуществляется при помощи лазера.
Существуют следующие типы приводов:
– привод CD-ROM (CD-привод);
– привод DVD-ROM (DVD-привод);
– привод HD DVD;
– привод BD-ROM;
– привод GD-ROM.
Сам по себе, оптический привод может быть в виде составляющей конструкции в составе более сложного оборудования (например, бытового DVD-проигрывателя) либо выпускаться в виде независимого устройства со стандартным интерфейсом подключения (PATA, SATA, USB), например для установки в компьютер.
3.2.5 Видеокарта.
Видеокарта – устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера или самого адаптера, в иную форму, предназначенную для дальнейшего вывода на экран монитора. В настоящее время эта функция утратила основное значение и в первую очередь под графическим адаптером понимают устройство с графическим процессором – графический ускоритель, который и занимается формированием самого графического образа.
Обычно видеокарта является платой расширения и вставляется в разъём расширения, универсальный (PCI-Express, PCI, ISA, VLB, EISA, MCA) или специализированный (AGP), но бывает и встроенной (интегрированной) в системную плату (как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета).
Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера.
Современная видеокарта состоит из следующих частей:
– графический процессор (GraphicsProcessingUnit, GPU – графическое процессорное устройство) – занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства;
– видеоконтроллер – отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора;
– видеопамять – выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, DDR2, GDDR3, GDDR4 и GDDR5. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE. В случае использования архитектуры UMA в качестве видеопамяти используется часть системной памяти компьютера;