Файл: Основные структуры алгоритмов: сравнительный анализ.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 06.04.2023

Просмотров: 240

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Введение

Благодаря бурному развитию науки информатики и проникновению её в различные отрасли народного хозяйства слово "алгоритм" стало часто встречающимся и наиболее употребляемым в житейском плане понятием для широкого круга специалистов. Более того, с переходом к информационному обществу алгоритмы становятся одним из важнейших факторов цивилизации.

Известно, что математическая теория алгоритмов сложилась вовсе не в связи с бурным развитием информатики и вычислительной техники, а возникла в недрах математической логики для решения её собственных проблем. Она, прежде всего, оказала большое влияние на мировоззрение математиков и на их науку.

Тем не менее, взаимовлияние теоретических областей, связанных с вычислительной техникой, и теории алгоритмов также, несомненно.

Составление пошагового описания процесса решения задачи называется алгоритмизацией, а алгоритмом называется конечный набор правил, расположенных в определённом логическом порядке, позволяющий исполнителю решать любую конкретную задачу из некоторого класса однотипных задач. В разных ситуациях в роли исполнителя может выступать электронное или какое-либо иное устройство или человек (например, военнослужащий, охраняющий склад боеприпасов и действующий согласно алгоритмам, записанным в устав караульной службы).

Теория алгоритмов оказала влияние на теоретическое программирование. В частности, большую роль в теоретическом программировании играют модели вычислительных автоматов, которые, по существу, являются ограничениями тех представительных вычислительных моделей, которые были созданы ранее в теории алгоритмов. Трактовка программ, как объектов вычисления, операторы, используемые для составления структурированных программ (последовательное выполнение, разветвление, повторение) пришли в программирование из теории алгоритмов. Обратное влияние выразилось, например, в том, что возникла потребность в создании и развитии теории вычислительной сложности алгоритмов. Таким образом, можно сказать, что теория алгоритмов применяется не только в информатике, но и в других областях знаний.

Цель данной курсовой работы рассмотреть теоретические основы алгоритмизации и программирования, а также привести примеры составления алгоритмов на практике.

Объектом данной курсовой работы является структура алгоритмов и их особенности, а предметом алгоритмы и языки программирования,


Работа состоит из введения, трех глав, заключения и списка использованной литературы.

Глава 1. Теоретическая аспекты и структура алгоритмов

1.1. Понятие алгоритма и его свойства

Алгоритм — описанная на некотором языке точная конечная система правил, определяющая содержание и порядок действий над некоторыми объектами, строгое выполнение которых дает решение поставленной задачи.

Слово «алгоритм» появилось в средние века, когда европейцы познакомились со способами выполнения арифметических действий в десятичной системе счисления, описанными узбекским математиком Муххамедом бен Аль-Хорезми («аль-Хорезми» - человек из города Хорезми; в настоящее время город Хива в Хорезмской области Узбекистана). Слово алгоритм – есть результат европейского произношения слов аль-Хорезми. Первоначально под алгоритмом понимали способ выполнения арифметических действий над десятичными числами. В дальнейшем это понятие стали использовать для обозначения любой последовательности действий, приводящей к решению поставленной задачи.

Любой алгоритм существует не сам по себе, а предназначен для определенного исполнителя (человека, робота, компьютера, языка программирования и т.д.).

Сам алгоритм описывается в командах исполнителя, который будетего реализовывать. Объекты, над которыми исполнитель может совершать действия, образуют так называемую среду исполнителя. Исходные данные и результаты любого алгоритма всегда принадлежат среде того исполнителя, для которого предназначен алгоритм.

Алгоритм характеризуется следующими свойствами: дискретностью, массовостью, определенностью, результативностью, формальностью.

Дискретность (разрывность — противоположно непрерывности) — это свойство алгоритма, характеризующее его структуру: каждый алгоритм состоит из отдельных законченных действий («Делится на шаги»).

Массовость — применимость алгоритма ко всем задачам рассматриваемого типа, при любых исходных данных.

Определенность (детерминированность, точность) - свойство алгоритма, указывающее на то, что каждый шаг алгоритма должен быть строго определен и не допускать различных толкований; также строго должен быть определен порядок выполнения отдельных шагов.


Результативность — свойство, состоящее в том, что любой алгоритм должен завершаться за конечное (может быть очень большое) число шагов. Вопрос о рассмотрении бесконечных алгоритмов остается за рамками теории алгоритмов.

Формальность — это свойство указывает на то, что любой исполнитель, способный воспринимать и выполнять инструкции алгоритма, действует формально, т.е. отвлекается от содержания поставленной задачи и лишь строго выполняет инструкции.

1.2. Способы описания алгоритмов

Существуют следующие способы описания алгоритма: словесное описание, псевдокод, блок-схема, программа.

Словесное описание представляет структуру алгоритма на естественном языке. Например, любой прибор бытовой техники (утюг, электропила, и т.п.) имеет инструкцию по эксплуатации, т.е. словесное описания алгоритма, в соответствии которому данный прибор должен использоваться.

Никаких правил составления словесного описания не существует. Запись алгоритма осуществляется в произвольной форме на естественном, например, русском языке. Этот способ описания не имеет широкого распространения, так как строго не формализуем (под «формальным» понимается то, что описание абсолютно полное и учитывает все возможные ситуации, которые могут возникнуть в ходе решения); допускает неоднозначность толкования при описании некоторых действий; страдает многословностью.

Псевдокод — описание структуры алгоритма на естественном, частично формализованном языке, позволяющее выявить основные этапы решения задачи, перед точной его записью на языке программирования. В псевдокоде используются некоторые формальные конструкции и общепринятая математическая символика.

Строгих синтаксических правил для записи псевдокода не существует. Это облегчает запись алгоритма при проектировании и позволяет описать алгоритм, используя любой набор команд. Однако в псевдокоде обычно используются некоторые конструкции, присущие формальным языкам, что облегчает переход от псевдокода к записи алгоритма на языке программирования. Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором используемых слов и конструкций.

Блок-схема — описание структуры алгоритма с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения отдельных инструкций. Этот способ имеет ряд преимуществ. Благодаря наглядности,он обеспечивает «читаемость» алгоритма и явно отображает порядок выполнения отдельных команд. В блок-схеме каждой формальной конструкции соответствует определенная геометрическая фигура или связанная линиями совокупность фигур.


Рассмотрим некоторые основные конструкции, использующиеся для построения блок-схем.

Блок, характеризующий начало/конец алгоритма (для

Начало

Конец

подпрограмм - вызов/возврат):

<Действие>

Блок — процесс, предназначенный для описания

отдельных действий:

Блок — предопределенный процесс, предназначенный для обращения к вспомогательным алгоритмам (подпрограммам):

Блок — ввода/вывода с неопределенного носителя:

Блок - ввод с клавиатуры:

Блок — вывод на монитор:

Блок — вывод на печатающее устройство:

Блок — решение (проверка условия или условный блок):

Нет Да

<тело цикла>

Блок, описывающий цикл с параметром:

Блок — границы цикла, описывающий циклические

<тело цикла>

процессы типа: «цикл с предусловием», «цикл

с постусловием»:

Соединительные блоки:

Описания алгоритма в словесной форме, на псевдокоде или в виде блок-схемы допускают некоторый произвол при изображении команд. Вместе с тем она настолько достаточна, что позволяет человеку понять суть дела и исполнить алгоритм. На практике исполнителями алгоритмов выступают компьютеры. Поэтому алгоритм, предназначенный для исполнения на компьютере, должен быть записан на «понятном» ему языке, такой формализованный язык называют языком программирования.

Программа — описание структуры алгоритма на языке алгоритмического программирования.

1.3. Основные алгоритмические конструкции

Элементарные шаги алгоритма можно объединить в следующие алгоритмические конструкции: линейные (последовательные), разветвляющиеся и циклические.

Линейная алгоритмическая конструкция

Линейным принято называть вычислительный процесс, в котором операции выполняются последовательно, в порядке их записи. Каждая операция является самостоятельной, независимой от каких-либо условий. На схеме блоки, отображающие эти операции, располагаются в линейной последовательности.

Линейные вычислительные процессы имеют место, например, при вычислении арифметических выражений, когда имеются конкретные числовые данные и над ними выполняются соответствующие условию задачи действия. На рисунке 1.1 показан пример линейного алгоритма, определяющего процесс вычисления арифметического выражения у=(b2-ас):(а+с).


Рис. 1.1 – Линейный алгоритм

Разветвляющаяся алгоритмическая конструкция

Разветвляющейся (или ветвящейся) называется алгоритмическая конструкция, обеспечивающая выбор между двумя альтернативами в зависимости от значения входных данных. При каждом конкретном наборе входных данных разветвляющийся алгоритм сводится к линейному. Различают неполное (если — то) и полное (если — то — иначе) ветвления. Полное ветвление позволяет организовать две ветви в алгоритме (то или иначе), каждая из которых ведет к общей точке их слияния, так что выполнение алгоритма продолжается независимо от того, какой путь был выбран (рис. 2).

Условие

Действие 2

Действие 1

Ложь (Нет) Истина (Да)

Рис. 1.2. Полное ветвление

Неполное ветвление предполагает наличие некоторых действий алгоритма только на одной ветви (то), вторая ветвь отсутствует, т.е. для одного из результатов проверки никаких действий выполнять не надо, управление сразу переходит к точке слияния (рис. 3).

Условие

Действия

Истина (Да)

Ложь (Нет)

Рис. 1.3. Неполное ветвление

В зависимости от типа и числа проверяемых условий различают:

- ветвление с простым условием (условие - выражение отношения);

- ветвление с составным условием (условие - логическое выражение);

- сложное ветвление (несколько условий).

Вариант вычислений, определяемый в результате проверки условия, называется ветвью.

Алгоритмическая конструкция «Цикл»

Циклическим называется процесс многократного повторения некоторого участка вычислений при изменении хотя бы одной из входящих в него величин.

Повторяющийся участок вычисления называется циклом. Цикл организуют по определенным правилам. Циклический алгоритм состоит из подготовки цикла, тела цикла, условия продолжения цикла. В подготовку цикла входят действия, связанные с заданием исходных значений для параметра цикла (начальное и конечное значения, шаг параметра цикла). Иногда при подготовке цикла задаются начальные значения и другим величинам, использующимся в цикле.