Файл: Механизмы защиты ОС.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 22.04.2023

Просмотров: 202

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Примерами систем, использующих перечни возможностей, являются Hydra, Cambridge CAP System.

2.4.5 Другие способы контроля доступа

Иногда применяется комбинированный способ. Например, в том же Unix на этапе открытия файла происходит анализ ACL (операция open). В случае благоприятного исхода файл заносится в список открытых процессом файлов, и при последующих операциях чтения и записи проверки прав доступа не происходит. Список открытых файлов можно рассматривать как перечень возможностей.

Существует также схема lock-key, которая является компромиссом между списками прав доступа и перечнями возможностей. В этой схеме каждый объект имеет список уникальных битовых шаблонов (patterns), называемых locks. Аналогично каждый домен имеет список уникальных битовых шаблонов, называемых ключами (keys). Процесс, выполняющийся в домене, может получить доступ к объекту, только если домен имеет ключ, который соответствует одному из шаблонов объекта.

Как и в случае мандатов, список ключей для домена должен управляться ОС. Пользователям не разрешается проверять или модифицировать списки ключей (или шаблонов) непосредственно.

2.5 Смена домена

В большинстве ОС для определения домена применяются идентификаторы пользователей. Обычно переключение между доменами происходит, когда меняется пользователь. Но почти все системы нуждаются в дополнительных механизмах смены домена, которые используются, когда некая привилегированная возможность необходима большому количеству пользователей. Hапример, может понадобиться разрешить пользователям иметь доступ к сети, не заставляя их писать собственные сетевые программы. В таких случаях для процессов ОС Unix предусмотрена установка бита set-uid. В результате установки этого бита в сетевой программе она получает привилегии ее создателя (а не пользователя), заставляя домен меняться на время ее выполнения. Таким образом, рядовой пользователь может получить нужные привилегии для доступа к сети.

2.6 Недопустимость повторного использования объектов

Контроль повторного использования объекта предназначен для предотвращения попыток незаконного получения конфиденциальной информации, остатки которой могли сохраниться в некоторых объектах, ранее использовавшихся и освобожденных другим пользователем. Безопасность повторного применения должна гарантироваться для областей оперативной памяти (в частности, для буферов с образами экрана,


расшифрованными паролями и т. п.), для дисковых блоков и магнитных носителей в целом. Очистка должна производиться путем записи маскирующей информации в объект при его освобождении (перераспределении). Hапример, для дисков на практике применяется способ двойной перезаписи освободившихся после удаления файлов блоков случайной битовой последовательностью.

2.7 Выявление вторжений. Аудит системы защиты

Даже самая лучшая система защиты рано или поздно будет взломана. Обнаружение попыток вторжения является важнейшей задачей системы защиты, поскольку ее решение позволяет минимизировать ущерб от взлома и собирать информацию о методах вторжения. Как правило, поведение взломщика отличается от поведения легального пользователя. Иногда эти различия можно выразить количественно, например подсчитывая число некорректных вводов пароля во время регистрации.

Основным инструментом выявления вторжений является запись данных аудита. Отдельные действия пользователей протоколируются, а полученный протокол используется для выявления вторжений.

Аудит, таким образом, заключается в регистрации специальных данных о различных типах событий, происходящих в системе и так или иначе влияющих на состояние безопасности компьютерной системы. К числу таких событий обычно причисляют следующие:

* вход или выход из системы;

* операции с файлами (открыть, закрыть, переименовать, удалить);

* обращение к удаленной системе;

* смена привилегий или иных атрибутов безопасности (режима доступа, уровня благонадежности пользователя и т. п.).

Если фиксировать все события, объем регистрационной информации, скорее всего, будет расти слишком быстро, а ее эффективный анализ станет невозможным. Следует предусматривать наличие средств выборочного протоколирования как в отношении пользователей, когда слежение осуществляется только за подозрительными личностями, так и в отношении событий. Слежка важна в первую очередь как профилактическое средство. Можно надеяться, что многие воздержатся от нарушений безопасности, зная, что их действия фиксируются.

Помимо протоколирования, можно периодически сканировать систему на наличие слабых мест в системе безопасности. Такое сканирование может проверить разнообразные аспекты системы:

* короткие или легкие пароли;


* неавторизованные set-uid программы, если система поддерживает этот механизм;

* неавторизованные программы в системных директориях;

* долго выполняющиеся программы;

* нелогичная защита как пользовательских, так и системных директорий и файлов. Примером нелогичной защиты может быть файл, который запрещено читать его автору, но в который разрешено записывать информацию постороннему пользователю;

* потенциально опасные списки поиска файлов, которые могут привести к запуску "троянского коня";

* изменения в системных программах, обнаруженные при помощи контрольных сумм.

Любая проблема, обнаруженная сканером безопасности, может быть как ликвидирована автоматически, так и передана для решения менеджеру системы.

2.8 Анализ некоторых популярных ОС с точки зрения их защищенности

Итак, ОС должна способствовать реализации мер безопасности или непосредственно поддерживать их. Примерами подобных решений в рамках аппаратуры и операционной системы могут быть:

* разделение команд по уровням привилегированности;

* сегментация адресного пространства процессов и организация защиты сегментов;

* защита различных процессов от взаимного влияния за счет выделения каждому своего виртуального пространства;

* особая защита ядра ОС;

* контроль повторного использования объекта;

* наличие средств управления доступом;

* структурированность системы, явное выделение надежной вычислительной базы (совокупности защищенных компонентов), обеспечение компактности этой базы;

* следование принципу минимизации привилегий - каждому компоненту дается ровно столько привилегий, сколько необходимо для выполнения им своих функций.

Большое значение имеет структура файловой системы. Hапример, в ОС с дискреционным контролем доступа каждый файл должен храниться вместе с дискреционным списком прав доступа к нему, а, например, при копировании файла все атрибуты, в том числе и ACL, должны быть автоматически скопированы вместе с телом файла.

В принципе, меры безопасности не обязательно должны быть заранее встроены в ОС - достаточно принципиальной возможности дополнительной установки защитных продуктов. Так, сугубо ненадежная система MS-DOS может быть усовершенствована за счет средств проверки паролей доступа к компьютеру и/или жесткому диску, за счет борьбы с вирусами путем отслеживания попыток записи в загрузочный сектор CMOS-средствами и т. п. Тем не менее по-настоящему надежная система должна изначально проектироваться с акцентом на механизмы безопасности.


2.8.1 MS-DOS

ОС MS-DOS функционирует в реальном режиме (real-mode) процессора i80x86. В ней невозможно выполнение требования, касающегося изоляции программных модулей (отсутствует аппаратная защита памяти). Уязвимым местом для защиты является также файловая система FAT, не предполагающая у файлов наличия атрибутов, связанных с разграничением доступа к ним. Таким образом, MS-DOS находится на самом нижнем уровне в иерархии защищенных ОС.

2.8.2 NetWare, IntranetWare

Замечание об отсутствии изоляции модулей друг от друга справедливо и в отношении рабочей станции NetWare. Однако NetWare - сетевая ОС, поэтому к ней возможно применение и иных критериев. Это на данный момент единственная сетевая ОС, сертифицированная по классу C2 (следующей, по-видимому, будет Windows 2000). При этом важно изолировать наиболее уязвимый участок системы безопасности NetWare - консоль сервера, и тогда следование определенной практике поможет увеличить степень защищенности данной сетевой операционной системы. Возможность создания безопасных систем обусловлена тем, что число работающих приложений фиксировано и пользователь не имеет возможности запуска своих приложений.

2.8.3 OS/2

OS/2 работает в защищенном режиме (protected-mode) процессора i80x86. Изоляция программных модулей реализуется при помощи встроенных в этот процессор механизмов защиты памяти. Поэтому она свободна от указанного выше коренного недостатка систем типа MS-DOS. Но OS/2 была спроектирована и разработана без учета требований по защите от несанкционированного доступа. Это сказывается прежде всего на файловой системе. В файловых системах OS/2 HPFS (high performance file system) и FAT нет места ACL. Кроме того, пользовательские программы имеют возможность запрета прерываний. Следовательно, сертификация OS/2 на соответствие какому-то классу защиты не представляется возможной.
Считается, что такие операционные системы, как MS-DOS, Mac OS, Windows, OS/2, имеют уровень защищенности D (по оранжевой книге). Но, если быть точным, нельзя считать эти ОС даже системами уровня безопасности D, ведь они никогда не представлялись на тестирование.

2.8.4 Unix

Рост популярности Unix и все большая осведомленность о проблемах безопасности привели к осознанию необходимости достичь приемлемого уровня безопасности ОС, сохранив при этом мобильность, гибкость и открытость программных продуктов. В Unix есть несколько уязвимых с точки зрения безопасности мест, хорошо известных опытным пользователям, вытекающих из самой природы Unix (см., например, раздел "Типичные объекты атаки хакеров" в книге [Дунаев, 1996]). Однако хорошее системное администрирование может ограничить эту уязвимость.


Относительно защищенности Unix сведения противоречивы. В Unix изначально были заложены идентификация пользователей и разграничение доступа. Как оказалось, средства защиты данных в Unix могут быть доработаны, и сегодня можно утверждать, что многие клоны Unix по всем параметрам соответствуют классу безопасности C2.

Обычно, говоря о защищенности Unix, рассматривают защищенность автоматизированных систем, одним из компонентов которых является Unix-сервер. Безопасность такой системы увязывается с защитой глобальных и локальных сетей, безопасностью удаленных сервисов типа telnet и rlogin/rsh и аутентификацией в сетевой конфигурации, безопасностью X Window-приложений. Hа системном уровне важно наличие средств идентификации и аудита.

В Unix существует список именованных пользователей, в соответствии с которым может быть построена система разграничения доступа.

В ОС Unix считается, что информация, нуждающаяся в защите, находится главным образом в файлах.

По отношению к конкретному файлу все пользователи делятся на три категории:

1 владелец файла;

2 члены группы владельца;

3 прочие пользователи.

Для каждой из этих категорий режим доступа определяет права на операции с файлом, а именно:

* право на чтение;

* право на запись;

* право на выполнение (для каталогов - право на поиск).

В итоге девяти (3х3) битов защиты оказывается достаточно, чтобы специфицировать ACL каждого файла.

Аналогичным образом защищены и другие объекты ОС Unix, например семафоры, сегменты разделяемой памяти и т. п.

Указанных видов прав достаточно, чтобы определить допустимость любой операции с файлами. Например, для удаления файла необходимо иметь право на запись в соответствующий каталог. Как уже говорилось, права доступа к файлу проверяются только на этапе открытия. При последующих операциях чтения и записи проверка не выполняется. В результате, если режим доступа к файлу меняется после того, как файл был открыт, это не сказывается на процессах, уже открывших этот файл. Данное обстоятельство является уязвимым с точки зрения безопасности местом.

Наличие всего трех видов субъектов доступа: владелец, группа, все остальные - затрудняет задание прав "с точностью до пользователя", особенно в случае больших конфигураций. В популярной разновидности Unix - Solaris имеется возможность использовать списки управления доступом (ACL), позволяющие индивидуально устанавливать права доступа отдельных пользователей или групп.

Среди всех пользователей особое положение занимает пользователь root, обладающий максимальными привилегиями. Обычные правила разграничения доступа к нему не применяются - ему доступна вся информация на компьютере.