Файл: АРМ, конфигурация ПК.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 25.07.2020

Просмотров: 583

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


c) Игровой компьютер требует наличия самой мощной графической подсистемы. Поэтому главным его элементом является графическая карта и адекватный потребностям процессор при достаточном объеме оперативной памяти. Игровой компьютер дополнительно комплектуют джойстиком, рулем (штурвалом), педалями, устройствами виртуальной реальности (шлемы, очки, перчатки).

d) Дизайнерский компьютер предназначен для выполнения сложных графических работ (кроме ЗD-графики кинематографического уровня) и обработки видео в режиме реального времени. По сути, это рабочая станция начального уровня, в достаточно компактном исполнении. Конкретная конфигурация дизайнерского ПК зависит от специфики решаемых задач. Для работы с ЗD-графикой требуется мощная видеокарта, для работы с видео – самый производительный процессор и так далее.


3. Ноутбук (Notebook) является переносным персональным компьютером. Помимо компактных габаритов, ноутбук отличается от настольного компьютера возможностью работы от аккумуляторов. Автономное функционирование обусловило высокие требования режиму энергопотребления компонентов. Обычно в ноутбуках используют специальные модификации процессоров, графических чипсетов, жестких дисков с низким энергопотреблением и автоматическим регулированием производительности в зависимости от решаемой задачи.

Обычно ноутбуки классифицируют по размеру, диагонали дисплея и числу “шпинделей” (отдельных приводов: жесткий диск, дисковод CD-ROM, дисковод гибких дисков и др.). Например, выражение “двухшпиндельный” ноутбук подразумевает наличие в компьютере жесткого диска и еще одного дисковода (чаще комбинированного привода DVD/CD-RW).

Настольный ноутбук (DeskNote). Этот класс компьютеров возник и развился в 2002 году. Его отличие от ноутбуков заключается в отсутствии аккумуляторов (и, как следствие, невозможности автономной работы), использовании процессоров для обычных настольных ПК, а иногда и адаптеров ЗD-графики высокого класса.


  1. Планшетный ПК (Tablet PC) характеризуется наличием отдельного сенсорного дисплея с возможностью рукописного ввода и специального электронного пера. Некоторые модели комплектуются клавиатурой, трекболом, приводом CD-ROM, жестким диском.



  1. Карманный ПК (Personal Digital Assistant, PDA) примыкает к товарной нише персональных компьютеров. Невысокая производительность, ограниченный набор программ и неудобный интерфейс пользователя сужают сферу применения КПК. Однако многие КПК позволяют подключаться к настольному компьютеру для переноса данных: телефонного справочника, записной книжки и прочих, позволяют читать литературные произведения в электронном виде, просматривать видео и т.д.

Персональные компьютеры являются наиболее широко используемыми, их мощность постоянно увеличивается, область применения расширяется. Однако их возможности ограничены, и для решения специфичных задач, требующих объемных вычислений, высочайшего быстродействия, применяют “не-персональные” компьютеры: супер-ЭВМ, большие ЭВМ (мэйнфреймы), мини-ЭВМ.



3. Состав типового компьютера


Рассмотрим в самых общих чертах принципы взаимодействия основных устройств.

Материнская (системная) плата – важнейший элемент ПК, к которому подключено все то, что составляет сам компьютер. Она служит для объединения и организации взаимодействия других компонентов. По сути, выбор конфигурации компьютера начинается именно с выбора системной платы. В нее устанавливается процессор, оперативная память, с ней связаны жесткий диск и CD-ROM, к ней через соответствующие различным интерфейсам разъемы и порты подключаются различные дополнительные устройства. Таким образом, материнская плата, центральный процессор, оперативная память составляют основу ПК, от их производительности в большой степени зависит производительность компьютера в целом. Материнские платы различаются по типу процессоров, которые могут быть установлены на них, и названия фирм, их выпускающих. На материнских платах находятся специальные перемычки – джамперы, позволяющие подстроить ее под тип процессора и других устройств, устанавливаемых на ней.

Компьютер должен быть готов к добавлению в систему стандартных дополнительных устройств, используя стандартные способы их подключения. Все узлы компьютера взаимосвязаны физически и логически. На материнской плате устанавливаются разъемы для установки дополнительных устройств – слоты расширения.

Все дополнительные устройства взаимодействуют с процессором и оперативной памятью через системную магистраль передачи данных – шину. Виды слотов расширения различаются по типу шины. Данные могут передаваться между внешними устройствами и процессором, оперативной памятью и процессором, внешними устройствами и оперативной памятью или между устройствами ввода-вывода. Шина характеризуется типом, разрядностью, частотой и количеством подключаемых внешних устройств. При работе с оперативной памятью шина проводит поиск нужного участка памяти и обменивается информацией с найденным участком. Эти задачи выполняют две части системной шины: адресная шина и шина данных.

Аппаратно-логические устройства, отвечающие за совместное функционирование различных компонентов, называют интерфейсами. Современный компьютер заполнен разными интерфейсами, обеспечивающими всеобщее взаимодействие. На интерфейсы существуют стандарты.

Совокупность интерфейсов, реализованных в компьютере, образует то, что называют архитектурой компьютера.

Для добавления в ПК нового дополнительного устройства необходим контроллер – устройство, аппаратно согласовывающее работу системы и дополнительного устройства. Кроме того, необходим драйвер этого устройства – программа, позволяющая программно связать это устройство с системой в целом.

Контроллер должен учитывать аппаратные особенности подключаемого устройства, а драйвер должен позволить операционной системе, используя стандартный набор командных запросов, управлять нестандартным устройством.


Драйвер выступает в роли “переводчика” с языка операционной системы на язык конкретного устройства, контроллер выступает в роли аппаратного “мостика” между системой в целом и дополнительным устройством.

Центральной частью компьютера является системный блок, с присоединенными к нему клавиатурой, монитором и мышью. Системный блок и монитор независимо друг от друга подключаются к источнику питания – сети переменного тока. В современных компьютерах дисплей и системный блок иногда монтируются в едином корпусе.


В корпусе системного блока располагаются все основные устройства компьютера:

  • микропроцессор – мозг компьютера, который выполняет поступающие на его вход команды: проводит вычисления и управляет работой остальных устройств ПК;

  • оперативная память, предназначенная для временного хранения программ и данных;

  • контроллеры, предназначенные для независимого от процессора управления отдельными процессами в работе ПК;

  • накопители на гибких магнитных дисках, используемые для чтения и записи на дискеты;

  • накопитель на жестком магнитном диске, предназначенный для чтения и записи на жесткий магнитный диск (винчестер);

  • дисководы для компакт-дисков, обеспечивающие возможность чтения данных с компьютерных компакт-дисков и проигрывания аудиокомпакт-дисков, а также запись информации на компакт-диск;

  • блок питания, преобразующий электропитание сети в постоянный ток, подаваемый на электронные схемы компьютера;

  • счетчик времени, который функционирует независимо от того, включен компьютер или нет;

  • другие устройства.


Все компоненты ПК по их функциональному отношению к работе с информацией можно условно разделить на:

  • устройства обработки информации (центральный процессор, специализированные процессоры);

  • устройства хранения информации (жесткий диск, CD-ROM, оперативная память, др.);

  • устройства ввода информации (клавиатура, мышь, микрофон, сканер и т.д.);

  • устройства вывода информации (монитор, принтер, акустическая система и т.д.);

  • устройства передачи информации (модем телефакс).


4. Устройства обработки – микропроцессор


4.1. История развития микропроцессоров


В 1959 г. инженеры фирмы “Texas Instruments” разработали способ, как разместить внутри одного полупроводникового кристалла несколько транзисторов и соединить их между собой – родилась первая интегральная микросхема (ИМС). По сравнению с функционально теми же устройствами, собранными из отдельных транзисторов, резисторов и т.п., ИМС обладает значительными преимуществами: меньшими габаритами, более высокой надежностью и т.д. Неудивительно, что количество выпускаемых микросхем стало быстро возрастать, а их ассортимент неуклонно расширяться. Последнее обстоятельство создавало ряд трудностей для потребителей. Важно даже не столько то, что стремительно возраставшее количество типов ИМС затрудняло ориентацию в море наименований. Значительно большим недостатком была узкая специализация ИМС, из-за которой объем их выпуска не мог быть большим, а значит стоимость одной микросхемы оставалась высокой. Улучшить ситуацию позволило бы создание универсальной логической ИМС, специализация которой определялась бы не заложенной на заводе внутренней структурой, а заданной непосредственно самим потребителем программой работы.


Таким образом, оказывается, что первые микропроцессоры (МП) появились совсем не для миниатюризации ЭВМ, а в целях создания более дешевой логической микросхемы, легко адаптируемой к потребностям пользователя.

История создания первого в мире микропроцессора достаточно поучительна. Летом 1969г. японская компания “Busicom”, разрабатывавшая новое семейство калькуляторов, обратилась за помощью в фирму “Intel”. К тому времени “Intel” просуществовала всего около года, но уже проявила себя созданием самой емкой на тот момент микросхемы памяти. Фирме “Busicom” как раз и требовалось изготовить микросхемы, содержащие несколько тысяч транзисторов. Для реализации совместного проекта был привлечен инженер фирмы “Intel” М.Хофф. Он познакомился с разработками “Busicom” и предложил альтернативную идею: вместо 12 сложных специализированных микросхем создать одну программируемую универсальную – микропроцессор. Проект Хоффа победил и фирма “Intel” получила контракт на производство первого в мире микропроцессора.

Практическая реализация идеи оказалась непростым делом. В начале 1970 г. к работе подключился Ф.Фаджин, который за 9 месяцев довел процессор от описания до кристалла (позднее Ф.Фаджин основал фирму “Zilog”, создавшую замечательный 8-разрядный процессор Z80, который успешно работал во многих домашних компьютерах). 15 ноября 1971 г. “Intel 4004” – так назвали процессор – был представлен общественности.

Поскольку для хранения одной цифры калькулятору требуется 4 бита (именно столько необходимо для изображения десятичных цифр “8” и “9”), “Intel 4004” был четырехразрядным процессором. Следующий микропроцессор предназначался для установки в терминал и должен был обрабатывать символьную информацию. Поскольку каждый символ кодируется одним байтом, следующая модель “Intel 8008” стала 8-разрядной; она появилась в апреле 1982 г. По-прежнему этот процессор был заменой “аппаратной логики”, но отдельные энтузиасты уже пытались собрать на нем компьютер. Результаты были скорее демонстрационными, нежели полезными, но микрокомпьютерная революция уже началась.

А в апреле 1974 г. компания “Intel” совершила новый качественный скачок: ее изделие с маркой “Intel 8080” стало первым в мире процессором, походившим на “настоящую” вычислительную машину. Отметим любопытную деталь: хотя процессор. и обрабатывал 8-разрядные данные, но адрес ОЗУ был двухбайтовым! Таким образом, 8080 мог иметь до 64 килобайт памяти, что по тем временам казалось программистам недостижимым пределом.

Дальнейшее развитие событий происходило прямо-таки с фантастической скоростью, даже если сравнивать с темпами динамично развивающейся вычислительной техники. За десятилетие был пройден путь от изобретения 4-разрядного МП до достаточно сложной 32-разрядной архитектуры. Было ликвидировано отставание микропроцессорной техники от обычных ЭВМ и началось интенсивное вытеснение последних (все ЭВМ четвертого поколения собраны на базе того или иного микропроцессора!). Для иллюстрации укажем, что первый МП 4004 содержал 2200 транзисторов, МП 8080 – 4800, МП “Intel 80486” – около 1,2 миллиона, а современный “Pentium” – около 3 миллионов!


История развития микропроцессоров представляет собой достаточно интересную самостоятельную тему. Здесь упомянем только, что пионер в создании процессорных микросхем фирма “Intel” по-прежнему сохраняет свои лидирующие позиции в этой области. Ее программно-совместимое семейство последовательно усложняющихся МП (16-разрядные 8086, 80286 и 32-разрядные 80386, 80486, “Pentium”) являются “мозгом” значительной части использующихся компьютеров. Именно на базе этих микропроцессоров собраны все широко распространенные в нашей стране IBM-совместимые компьютеры.

Другую ветку обширного микропроцессорного семейства образуют МП фирмы “Motorola”: ее изделия работают в известных компьютерах “Apple”, а также в более простых – “Atari”, “Commador”, “Amiga” и др. Процессоры “Motorola” ничуть не хуже, а порой даже заметно лучше производимых компанией “Intel”. Но на стороне последней – огромные производственные мощности транснационального гиганта IBM и десятки южно-азиатских фирм, буквально наводнившие мир дешевыми IBM-совместимыми компьютерами.

В 1993 г. фирма “Motorola” совместно с IBM и “Apple” разработала новый процессор “PowerPC”. Этот процессор имеет очень хорошие технические характеристики, но самое главное в нем – он может эмулировать работу компьютеров и “Apple”, и IBM. Очевидно, что это событие еще более обострит конкурентную борьбу на рынке микропроцессоров.

Завершая краткий исторический экскурс, попробуем определить некоторые новые направления развития МП в ближайшем будущем. Характерной чертой последних моделей процессоров является возможность работы в многозадачном режиме, который фактически стал нормой для современных ЭВМ. Развивается RISC-архитектура микропроцессоров (процессоры с минимальным числом команд). Такой МП работает необычайно быстро и способен выполнить любую из своих немногочисленных команд за один машинный такт, в то время как обычно на выполнение простой операции требуется 4-5 тактов. Ярким примером достоинств RISC-архитектуры является уже упоминавшийся процессор “PowerPC”. Следует особо подчеркнуть, что успехи RISC-подхода оказывают существенное влияние и на конструирование CISC-процессоров (процессоры с полным набором команд). Так, существенное ускорение классических CISC МП старших моделей семейства “Intel” достигается за счет конвейерного выполнения команд, заимствованного из RISC МП.

И, наконец, нельзя не упомянуть о транспьютерах, содержащих в процессорном кристалле собственное ОЗУ от 2 до 16 кбайт и каналы связи с внешним ОЗУ и с другими транспьютерами. Теоретические возможности этих ИМС, реализующих алгоритмы параллельных вычислений, поражают воображение. Однако потребуется значительное время, прежде чем они смогут быть практически реализованы.

Не следует думать, что бурное развитие микропроцессоров требуется только для вычислительных машин, где МП используются уже не только в качестве центрального процессора, но и в качестве контроллеров для управления сложными периферийными устройствами типа винчестера или лазерного принтера. Все большее число ИМС ставится в изделия, напрямую не связанные с ЭВМ, в том числе и бытовые: лазерные аудио- и видеопроигрывателц, телетекст и пейджинговая связь, программируемые микроволновые печи и стиральные машины, а также многие другие. Очевидно, что число таких управляемых микропроцессорами устройств будет все время возрастать.