Файл: Экология ландшафтов. Шпоры.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.09.2020

Просмотров: 1360

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Биогенные поля природных лесных «микрорезерватов» среди пахотных земель могут проявляться в увеличении количества насекомых-опылителей, птиц, более интенсивном рассеивании семян.

Термин экотон ввел в экологию Ф.Клеменс в 1928 г. Он понимал под ним переходную полосу (зону) между двумя достаточно контрастными геосистемами. Типичный пример, полоса (зона) между лесом и степью.

Возникновение ландшафтных экотонов обусловлено общей закономерностью эволюции пространственных систем – т.е. постепенным стиранием (сглаживанием) резких границ в природе в следствии все большего развития межгеосистемных взаимоотношений. В результате линейная граница со временем трансформируется в переходную полосу (четко выраженные бровки молодой эрозионной формы со временем разрушаются и становятся все более пологими поверхностями; линейная граница между лесом и лугом постепенно сглаживается взаимопроникновением лесных и луговых видов в смежные биотопы и созданием опушки). Дальнейшее развитие ландшафтного экотона приводит к формированию в нем определенных специфических черт, не характерных ни одной из контактирующих геосистем. Со временем ландшафтный экотон преобразуется в клинальную или типичную (обыкновенную) геосистему с собственными границами, возможно также экотоннового характера.

Формирование и развитие экотона представляет собой закономерно развертывающийся во времени процесс взаимообусловленного изменения его строения и мембранной функции.

6. Бассейновая и баръерная, ландшафтные структуры. Виды баръеров.

Бассейновая ландшафтная структура представлена территориальными единицами, сформировавшимися в результате гидрофункционирования. Это бассейны рек разного порядка, анализируемые с ландшафтных позиций – прежде всего путем исследования парагенетических и других отношений, составляющих речной бассейн территориальных единиц. По мере перехода к бассейнам более крупных водотоков в них уменьшаются признаки генетико-морфологической структуры, в то время как парагенетические отношения приобретают все большее значение. Последние в комплексе образуют специфические ландшафтные системы разных порядков. Можно полагать, что бассейновый подход к вычленению ландшафтных территориальных структур привлекает внимание чрезвычайной простотой выделения границ (по водоразделам) и процедуры выделения иерархической дифференциации территории (то есть каждый бассейн более высокого порядка довольно просто разделить на бассейны более низкого порядка).

Барьерами называют участки географической оболочки (тела, поверхности, линии, точки), которые оказывают существенное влияние на поля и потоки вещества и энергии, задерживая, трансформируя, ослабляя или усиливая их. Наиболее масштабные и заметные барьеры – горные системы: Анды, Кордильеры, Гималаи, Альпы, Кавказ, Уральские горы и т.д. Они трансформируют воздушные массы, атмосферные фронты, что выражается в увеличении количества осадков на наветренной стороне гор и уменьшении – на подветренной стороне. Задержание теплых или холодных воздушных масс приводит к образованию климаторазделов: по обе стороны хребта формируются контрастные в температурном отношении типы климата.


По отношении к водным потокам препятствиями являются и понижения рельефа (геоморфологические барьеры, или пороги): водный поток, дойдя до понижения, изменяет свое направление и начинает двигаться вдоль него. Любое понижение служит ловушкой для снежного покрова.

Известны эффекты, связанные с геохимическими барьерами, т.е. участками земной коры, где на коротком расстоянии происходит смена обстановки (окислительная – восстановительная, кислая – щелочная и т.д.), уменьшение интенсивности миграции химических элементов, их концентрация. Изучение геохимических барьеров помогает понять закономерности размещения полезных ископаемых, распространения загрязнений.

А.И.Перельман (1975) выделяет четыре типа барьеров: механические, физико-химические, биогеохимические и техногенные. Наиболее часто встречающимся типом является физико-химический.

Специфическим барьером является экватор – невидимая граница, от которой отклоняющаяся сила вращения Земли (сила Кориолиса) направлена в разные стороны: в Северном полушарии – в право, в Южном – в лево. Слабая выраженность силы Кориолиса в приэкваториальной зоне определяет отсутствие здесь тропических циклонов.


7. Понятие граница ландшафта. Горизонтальные и вертикальные границы ландшафтов.

Границы ландшафтов – это поверхности раздела смежных ландшафтов, смены их качеств, свойств; а также поверхности, которыми ландшафт как бы отделен от других, неландшафтных географических образований (например, от не входящих в состав ландшафта слоев атмосферы или литосферы). Различают границы между соседними ландшафтами, а также верхние и нижние, выявляемые при рассмотрении вертикального строения ландшафта.

Границы могут быть резкими, четкими, отражаемыми на карте линиями, или расплывчатыми, постепенными, отражающимися на поверхности Земли и на крупномасштабных картах в форме переходных полос различной ширины. Резкие границы встречаются не часто. Они обычны в случае изменения литологии (например, выход базальтовых покровов) или при смене состояния вещества (например, граница: море, озеро – суша и т.д.). Степень выразительности границ (ширина переходной полосы) в ландшафте любого ранга непостоянна и может меняться на коротком расстоянии.

Существует точка зрения (И.И.Мамай, 1978), что горизонтальные границы геосистем любого ранга складываются, в конечном итоге, из небольших отрезков границ разных фаций. Однако на поверхности Земли далеко не каждая фация или урочище входят в пограничную зону.

Поскольку динамичен ландшафт, динамичны и его границы.

Вертикальные границы геосистем

Если горизонтальные границы геосистем исследованы относительно хорошо, то о верхней и нижней границе ландшафта (фации, урочища) имеется еще мало данных. Поэтому вопрос о том, где проходят вертикальные границы, до сих пор остается дискуссионным.


А.Ю.Ретеюм (1966) считает, что верхняя граница биогеоценоза (фации) чрезвычайно непостоянна и зависит от типа биологического круговорота, радиационного баланса поверхности, ее шероховатости и метеорологических условий. У биогеоценоза с травянистой растительностью она расположена на высоте от нескольких десятков сантиметров (ночью, зимой и вообще при устойчивой стратификации) до 1-3 метров (днем, летом и при сверхадиабатических градиентах температуры). В лесных биогеоценозах (фациях) эта же граница проходит на высоте нескольких десятков метров.

До настоящего времени остается неясным вопрос о нижних рубежах геосистем различного таксономического уровня. Нижнюю границу геосистем чаще всего проводят по основанию зоны гипергенеза (Ф.Н.Мильков, С.В.Калесник, Д.И.Криволуцкий и др.).

Н.Л.Беручашвили, А.А.Крауклис на основании градиентных наблюдений определяют нижние границы фаций по слою постоянных температур, проходящих на глубине 15-18 м.


8. Основные типы границ ландшафтов. Экологические функции ландшафтных границ.

Смена ландшафтов в пространстве может происходить двумя способами: 1) скачкообразно (линейная или дискретная граница); и 2) занимать некую переходную полосу (ландшафтный экотон), границы которой можно провести (то есть бывают ли у границ свои границы?).Классифицировать границы можно по разным основаниям деления. Так, Б.Б.Родоман по функциональным признакам различает дивергентные, конвергентные, градиентные и процессные границы.

К дивергентным относятся границы, разделяющие потоки (воды, воздуха, минеральных веществ и т.д.) и направляющие их в разные стороны. Они соответствуют водоразделам, гребням, осевым зонам максимумов атмосферного давления, другим образованиям. Конвергентные границы, напротив, располагаются там, где сходятся потоки, происходит их конвергенция. Это границы-концентраторы, собиратели, вдоль которых разнонаправленные потоки соединяются. К ним относятся тальвеги, ложбины, осевые зоны минимумов атмосферного давления и др. Градиентные границы соответствуют зонам наибольшего изменения параметров, т.е. наибольшему градиенту (на этих границах значительно изменяется интенсивность потока). Градиентные границы разделяются на два подтипа – границы градиентные импульсивные (вдоль них интенсивность потока увеличивается) и градиентные затухающие (интенсивность потока уменьшается). Как градиентные границы можно рассматривать границы между лесной и травянистой растительностью, береговую линию и т.д. Процессные границы фиксируют смену процесса, например переход от зоны преимущественно плоскостного смыва к зоне линейной эрозии. В каждом конкретном случае геосистемы имеют границы, которые можно отнести к конвергентным, дивергентным, градиентным или процессным.

По характеру выраженности границ выделяются следующие виды: 1) четкие, если ширина переходной полосы намного меньше, чем протяженность ландшафта; 2) постепенные, если ширина переходной полосы соизмерима с протяженностью геосистемы; 3) экотоны – переходные полосы с постепенным переходом одного ландшафта к другому, когда точно установить местоположение границы разных ландшафтов крайне трудно.


Независимо от ширины, ландшафтные границы могут быть реальными (объективными) и условными. Местоположение первых можно определить однозначно. Примером таких границ являются водораздельные линии в резко расчлененном ландшафте, тальвеги, экотоны (переходные полосы) на границе леса и поля. Условные границы выделяют как некие линии в реальной переходной полосе, когда ее необходимо условно изобразить в виде линии (например, на карте). Условность их состоит в том, что реальная ширина границы не берется во внимание.

По генезису, т.е. основному фактору, который обусловил появление границ, они подразделяются на литогенные, морфогенные, педогенные, гидрогенные, фитогенные, зоогенные, антропогенные. Однако, как правило, большинство границ имеют комплексный характер. Например, морфолитогенные, педофитогенные и т.д.

По функции в ландшафтной территориальной структуре границы бывают контактными и барьерными. Вдоль контактных границ происходит взаимодействие двух смежных геосистем, взаимопроникновение их свойств, перемещение вещественно-энергетических потоков. Такими являются границы ландшафтных полос на склоне, границы биоцентров. Барьерная граница полностью исключает взаимодействие соседних геосистем. Ярким примером их являются границы бассейнов. Большинство границ по отношению к различным типам горизонтальных межгеосистемных связей выполняют и барьерную, и контактную функцию Д.И. Люри (1988) предложил их назвать мембранными.

В ландшафтной экологии границы анализируются и с точки зрения их формы. Различают прямые, волнистые, пилообразные, зубчатые, дендритные и другие границы. Наиболее подробно формы границ геосистем рассмотрены в работах А.С.Викторова, Б.В.Виноградова, В.Н.Степанова, А.А.Ниценко и др.




9. Значение энергии в ландшафтах. Основные источники энергии и тепла в ландшафтах.

Энергия и тепло – это непременные и важнейшие составляющие ландшафта, определяющие функционирование и взаимосвязь всех процессов и компонентов, единство и целостность природных комплексов. Энергия пронизывает ландшафты по всему их объему, как литогенную основу, так и входящие в пределы ландшафта воду, массы воздуха и живые организмы. Именно энергия наиболее полно и универсально связывает столь разнообразные явления.

Основными источниками энергии и тепла ландшафтов являются Солнце и Космос, с одной стороны, и внутренняя энергия Земли – с другой. От первого источника энергия поступает в виде электромагнитного, корпускулярного и других излучений, энергии метеоритов и космических лучей. Отметим, что тепловая энергия, поступающая от других небесных тел (кроме Солнца) на Землю ничтожна мала. Поток тепла из глубин Земли к поверхности примерно на пять порядков меньше суммарной солнечной радиации.

Со вторым источником связана гравитация, энергия земных недр – тепло, образующееся в результате распада радиоактивных элементов, дифференциации магмы и других процессов, а также энергия тектонических движений и энергия вращения Земли вокруг своей оси.


Отмеченные виды энергии в ландшафте взаимодействуют. Связанные с внешней космической энергией силы стремятся, в частности, сгладить неровности, возникающие на поверхности в результате проявления сил, связанных с внутриземными источниками энергии. Все виды энергии в ландшафтах преобразуются, выступают в разных формах, вступают во всевозможные связи. Происходит непрерывный обмен энергией между ландшафтами и окружающей их средой. Приход и расход энергии ландшафтом определяет его энергетический уровень, который, в свою очередь, является энергетической базой ландшафтообразующих процессов. Интенсивность и размах этих процессов самым тесным образом связаны с данным уровнем.

Энергетический уровень, на котором «работает» ландшафт» Д.Л.Арманд (1975) делит на две части: обменную и накопленную. Обменная часть энергетического уровня данного ландшафтного комплекса состоит из приходящей солнечной радиации, тепла, приносимого воздушными массами и водой, тепла фазового превращения воды, тепла из земных недр, кинетической энергии падающих осадков и их потенциальной энергии, остающейся после выпадения на приподнятые ландшафтные комплексы (энергия стока). Накопленная часть энергетического уровня ландшафта представлена потенциальной энергией горных пород, воды озер, ледников, приподнятых над базисом денудации, химической энергией неорганических соединений, энергией органических соединений. Накопленная часть энергии является как бы законсервированной и может принять активное участие в развитии ландшафтов только после ее освобождения. Последнее обычно происходит в результате проявлений обменной энергии.


10. Трансформация солнечной энергии в ландшафтах.

Для функционирования ландшафта солнечная энергия наиболее эффективна; она способна превращаться в различные иные виды энергии – прежде всего в тепловую, а также в химическую и механическую. За счет солнечной энергии осуществляются внутренние обменные процессы в ландшафте, включая влагооборот и биологический метаболизм, а также циркуляция воздушных масс и др.

Можно сказать, что все вертикальные связи в ландшафте и многие горизонтальные прямо или косвенно связаны с трансформацией солнечной энергии.

С потоком солнечной радиации связана пространственная и временная упорядоченность вещественного метаболизма в ландшафтах. Обеспеченность солнечной энергией определяет интенсивность функционирования ландшафтов (при равной влагообеспеченности), а сезонные колебания инсоляции обусловливают основной годичный цикл функционирования. На земной поверхности электромагнитное излучение Солнца в основном превращается в тепловую энергию и после трансформации в ландшафтах в виде тепла же излучается в космическое пространство (Исаченко, 1991).

Преобразование приходящей солнечной радиации начинается с отражения части ее от земной поверхности. Количество отраженной радиации зависит от альбедо поверхности. Большая часть тепла, поглощаемого земной поверхностью, т.е. радиационного баланса, затрачивается на влагооборот и нагревание. Соотношение двух расходных статей радиационного баланса существенно различается по ландшафтам и в общих чертах подчинено зональности. При этом в гумидных ландшафтах основная доля радиационного баланса расходуется на испарение, а в аридных – на турбулентный поток тепла в атмосферу.