ВУЗ: Смоленский областной казачий институт промышленных технологий и бизнеса
Категория: Лекция
Дисциплина: Моделирование систем
Добавлен: 19.11.2018
Просмотров: 629
Скачиваний: 10
Если такого столбца не обнаружится, за принимается максимальное найденное абсолютное значение и соответствующий столбец вводится в базис.
3. Определение выводимого.
Пусть - вводимый столбец, соответствующий переменной Базисный план - это решение системы Увеличиваем .
Умножим слева на , т.е. .
Здесь - базисный план, - разложение вводимого столбца по базису.
Находим максимальное значение , при котором все значения не отрицательны. Если может быть взято как угодно велико, решение не ограничено. В противном случае один из элементов выйдет на нулевое значение. Выводим соответствующий столбец из базиса.
4. Пересчет опорного(базисного) плана.
Вычисляем новый опорный план по уже приведенной формуле с найденным значением .
5. Пересчитываем обратную к базисной .
Пусть - выводимый столбец.
Матрица B представима в виде
где - базисная матрица без выводимого столбца.
После замены столбца базисная матрица будет иметь вид
Нам нужно найти матрицу , такую что
=> => =>
Откуда
Замечание.
При пересчете матрицы накапливаются ошибки округления. Во избежание получения больших ошибок время от времени матрица пересчитывается полностью. Этот процесс называется "повторением".
Мультипликативный вариант симплекс-метода
В мультипликативном варианте матрица не хранится, хранятся лишь множители
При решении экономических задач часто матрица ограничений разреженная, в таком случае мультипликативный вариант получает дополнительные преимущества - можно хранить мультипликаторы в сжатом виде (не хранить нули).
Другие варианты симплекс-метода
Во избежание накопления ошибок округления может использоваться LU-разложение матрицы.
При подавляющем числе ограничений типа "неравенство" может быть использован метод переменного базиса.
Метод основан на том, что базисная матрица может быть представлена в виде
Обратная к ней имеет вид
При относительно небольших размерах матрицы остальная часть матрицы может не храниться.
Таким подходом удается решить задачи с десятками миллионов строк ограничений (например, из теории игр).
Двойственный симплекс-метод
Для реализации двойственного метода необходимо перейти от задачи на минимум к задаче на максимум (или наоборот) путем транспонирования матрицы коэффициентов. При переходе от задачи на минимум целевая функция примет вид:
при ограничениях
.
Теорема двойственности. Если из пары двойственных задач одна обладает оптимальным планом, то и другая имеет решение, причем экстремальные значения линейных функций этих задач равны.
Если линейная функция одной из задач не ограничена, то другая не имеет решения.
Вычислительная эффективность
Симплекс-метод удивительно эффективен на практике, но в 1972 Кли и Минти [4] привели пример, в котором симплекс-метод перебирал все вершины симплекса, что показывает экспоненциальную сходимость метода в худшем случае. С тех пор для каждого варианта метода был найден пример, на котором метод вел себя исключительно плохо.
Наблюдения и анализ эффективности метода в практических приложениях привело к развитию других способов измерения эффективности.
Симплекс-метод имеет среднюю полиномиальную сходимость при широком выборе распределения значений в случайных матрицах.
Вычислительная эффективность оценивается обычно при помощи двух параметров:
1) Числа итераций, необходимого для получения решения;
2) Затрат машинного времени.
В результате численных экспериментов получены результаты:
1) Число итераций при решении задач линейного программирования в стандартной форме с ограничениями и переменными заключено между и . Среднее число итераций . Верхняя граница числа итераций равна .
2) Требуемое машинное время пропорционально .
Число ограничений больше влияет на вычислительную эффективность, чем число переменных, поэтому при формулировке задач линейного программирования нужно стремиться к уменьшению числа ограничений пусть даже путём роста числа переменных.