Файл: Абдурахманов \'Биогеография\'.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.09.2020

Просмотров: 7164

Скачиваний: 70

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Что касается количества накапливаемых элементов, то 99,9 % живой массы организмов составляют элементы "исходной дюжины": Н, С, N, О, Na, Mg, Р, S, C1, К, Ca, Fe. Все они относятся к первым 26 самым легким элементам Периодической системы, на что обратил внимание еще Д.И.Менделеев. 99 % живой массы образовано всего четырьмя элементами: Н, С, N, О, которые отличаются высокой реакционной способностью, имеют хорошо растворимые соединения и активно взаимодействуют с углеродом.

Надо помнить, что никакие биохимические реакции на Земле не идут без воды, а наличие свободной воды является такой же важнейшей особенностью биосферы, как и деятельность "живого вещества". Даже пределы активной жизни в биосфере обусловлены возможностью нахождения здесь воды в жидком состоянии. Большое количество воды характерно для любых живых организмов настолько, что, как писал известный немецкий физиолог Э.Дюбуа-Реймон,

52

организм является одушевленной водой. Для живого организма связанная вода, не теряющая основных свойств, - непременный составной компонент. Количество ее в живых организмах, за исключением спор и инертных семян, колеблется от 60 до 99,7 %.

В биосфере круговорот элемента будет быстрым и устойчивым только в том случае, если вещества не только растворимы, но и летучи, т.е. если одно из соединений элемента может, подобно воде, возвращаться на сушу через атмосферу. Таких элементов в биосфере не менее трех: С, N и S. Среди их "воздушных" соединений - диоксид углерода (СО2), метан (СН4), свободный азот (N2), аммиак (NH3), сероводород (H2S) и диоксид серы (SO2). Интересно, что в процессе круговорота углерод, азот и сера меняют свои валентности. Явно неслучайно, что все они находятся в биосфере в более восстановленной форме, чем в окружающей среде.

Современная биохимия полагает, что три основные химические реакции обеспечивают образование биомассы и биогенный круговорот:

фиксация углерода в процессе фотосинтеза или хемосинтеза, иначе говоря, карбоксилирование;

восстановление серы микробами - облигатными анаэробами;

восстановление азота путем присоединения водорода, т.е. гидрогенирование.

Из этих реакций только фиксация углерода непременно происходит в зеленом растении под действием солнечного света. Две другие реакции проводятся микробами в анаэробных условиях. Вода в принципе способна обращаться самостоятельно, без помощи биосферы. Но, будучи источником водорода, дающего биосфере энергию, вода не может не оказаться вовлеченной в реакции, идущие в живом веществе.

В обмене веществ между живой и неживой природой наиболее важно перераспределение газов. Растения, синтезируя органическое вещество, поглощают из атмосферы углекислый газ и выделяют кислород. Связывание в органическом веществе 1 г углерода сопровождается выделением 2,7 г кислорода. С каждого гектара луга за год в атмосферу выделяется 10-12 тыс. м3 этого газа. Ежегодно запас кислорода пополняется на (7- 10) · 1010 т за счет фотосинтеза зеленых растений.


Важнейшая стадия этого круговорота - фотосинтетическое восстановление диоксида углерода. По существу это реакция гидрогенирования, дающая в результате формальдегид. Источником водорода служит дегидрогенирование воды (отнятие у нее водорода); при этом попутно освобождается кислород. Такой способ накопления энергии химических связей свойствен только зеленым растениям, но аккумулированная энергия становится пригодной для использования и внутри организма для других жизненных

53

реакций, и в экосистеме для функционирования трофических (пищевых) цепей. Углерод, фиксированный растениями и использованный затем не только ими, но и животными, возвращается вновь окисленным до диоксида во внешнюю среду, где может включиться в любой геохимический круговорот.

Химическое восстановление азота - одна из важнейших реакций гидрогенирования - не может проводиться зелеными растениями, хотя его результат отнюдь не безразличен для них: круговороты углерода и азота тесно зависят один от другого. Без микроорганизмов, поглощающих азот из воздуха и гидрогенирующих азот (источником углерода для них служит его диоксид), весь азот биосферы вскоре перешел бы в атмосферу и остался там в устойчивой окисленной форме.

54

БИОЛОГИЧЕСКАЯ ПРОДУКТИВНОСТЬ

Способность накапливать энергию солнечного света в органическом веществе называется продуктивностью живых организмов. Даже при оптимальных условиях растения на суше могут использовать лишь несколько процентов видимого излучения Солнца, а коэффициент полезного действия для всей поверхности суши составляет 0,1 - 0,3 %.

Как было сказано выше, выделяют три основные группы организмов: продуценты - зеленые растения, способные к фотосинтезу, и бактерии, осуществляющие хемосинтез, т. е. организмы, дающие первичную продукцию; консументы - организмы, потребляющие первичную или вторичную продукцию, т. е. потребляющие готовое органическое вещество и переводящие его в другие формы органического вещества (животные, паразитические растения и др.); редуценты (деструкторы) - организмы, живущие за счет мертвых органических веществ и разлагающие их до минеральных веществ (многие бактерии, грибы и некоторые животные).

В свою очередь, консументы подразделяют на три подгруппы: консументы первого порядка - растительноядные организмы, фитофаги, потребители органического вещества, доставляемого растениями; консументы второго порядка - хищники и паразиты, питающиеся растительноядными организмами; консументы третьего порядка - хищники и паразиты, питающиеся хищными животными и паразитами. Представители последних двух групп называются зоофагами. Это подразделение в известной степени условно: имеется значительное количество всеядных животных, эврифагов, питающихся и растительной и животной пищей. Кроме того, животные, как указывал М.С. Гиляров (1965), не только переводят органическое вещество из одного вида в другой, но и


54

выделяют минеральные или органические легко минерализующиеся вещества, т. е. являются как консументами, так и в некоторой степени редуцентами. Таким образом, разделение организмов на три группы соответствует их роли в превращении вещества. Обмен веществ, происходящий в природе, возможен только при участии представителей всех трех групп организмов.

Скорость процессов обмена веществ, происходящих на нашей планете, кажется несовместимой с незначительной массой живого вещества, которая составляет примерно 0,01 % массы земной коры в слое 16 км. Приведем основные термины, используемые при рассмотрении изменений биомассы и биологической продукции.

Биомасса - масса организмов, присутствующих в экосистеме в момент наблюдения и учтенная на единицу площади; она может быть выражена в единицах массы и энергии (калориях).

Продукция - количество органического вещества, создаваемого в единицу времени на единицу площади.

Первичная валовая продукция в) - суммарная продукция фотосинтеза (суммарная ассимиляция), включающая, следовательно, и вещество, сжигаемое при дыхании за единицу времени. Чистая первичная продукция определяется эффективностью фотосинтеза, которая зависит от чистой продуктивности фотосинтеза, площади фотосинтезирующих органов, а также от длительности периода активного фотосинтеза; чистая продукция ч) - это вещество, которое можно взвесить при уборке урожая. Наконец, вторичная продукция 2) - биомасса, создаваемая консументами.

Продуценты начинают собой трофические (пищевые) цепи. Трофические цепи образуют последовательность иерархических уровней, начинающуюся уровнем создания продукции, за которым следуют несколько уровней потребления.

Масса организмов (биомасса) какого-либо трофического уровня характеризуется некоторым количеством энергии, накопленной на этом уровне и находящейся в химической форме. Поток энергии, проходящий через трофический уровень, представляет собой суммарную ассимиляцию на этом уровне, или сумму продуцируемой биомассы и веществ, затраченных в процессе продуцирования на дыхание. Согласно второму закону термодинамики, при переходе с одного уровня на другой значительная часть потенциальной энергии каждый раз теряется. Уже в момент соприкосновения солнечной энергии с уровнем продуцентов большая ее часть рассеивается в форме теплоты, лишь 1 % используется на фотосинтез. Точно так же переходы через различные уровни потребления сопровождаются значительными потерями вещества, а следовательно, и химической энергии. Судьба органического вещества какого-либо трофического уровня, которое служит кормом

55

организмам вышестоящего уровня, неоднозначна: значительная часть его выбрасывается в форме неассимилированных экскрементов, становящихся началом цепей питания сапрофагов; заметная доля ассимилированной пищи сгорает в процессе дыхания, остальная служит материалом для образования новой протоплазмы. Таким образом, в потоке сохраняется лишь малая часть потенциальной энергии предыдущего уровня, тогда как ее большая часть рассеивается в форме теплоты.


Трофические цепи можно разделить на три важнейшие группы.

1. Цепи зеленых растений, или так называемые "пастбищные" пищевые цепи, начинаются зелеными растениями или водорослями, создающими органическое вещество путем фотосинтетической фиксации СО2. Затем эта цепь разветвляется на несколько потоков, в том числе продолжается фитофагами (потребителями зеленых растений) - насекомыми, нематодами, моллюсками, млекопитающими, птицами, - а далее потребителями фитофагов: хищниками и паразитами.

2. Детритные пищевые цепи начинаются с мертвого органического вещества, созданного ранее растениями и неиспользованного в пастбищной цепи. Здесь возможно несколько вариантов, в том числе цепи морского и пресноводного планктона, где первое звено гетеротрофов представлено бактериями - потребителями растворенного или дисперсного органического вещества, а далее цепь продолжают бактериофаги и хищники нескольких трофических уровней. Другой вариант - цепи почвенных микофагов (потребителей грибов), которые начинают грибы, разлагающие мертвые растительные остатки, а продолжают бесчисленные потребители грибов, их хищники и паразиты. Существуют и цепи "собственно детритофагов" (дождевых червей, моллюсков, грунтоядов морей и пресных вод), которые, заглатывая разлагающиеся органические вещества, переваривают в первую очередь микробов, осуществляющих это разложение, и продукты их метаболизма. У этих животных есть множество своих врагов (хищников и паразитов), так что эта цепь, особенно в море, может состоять из 5 - 6 звеньев.

3. Цепи "хемобиоса", образующиеся в донных осадках, на разломах океанической коры и в почвах автотрофными бактериями, способными к получению энергии за счет восстановления серы или окисления неорганических веществ.

Приводимая типология трофических цепей, как было показано Д. А. Криволуцким и А. Д. Покаржевским (1985), не является единственно возможной: ее можно строить по движению по цепи не только органического вещества, т.е. соединений углерода, но и азота, водорода или серы. Интересно отметить, что в любой трофической цепи обязательно присутствует "микробиальное звено" или в виде "внешнего" компонента в открытой среде, или в

56

виде "внутреннего" звена в кишечниках потребляющих органические вещества животных, поскольку основные по массе органические соединения экосистем (гумус, лигнины, целлюлозу) могут перерабатывать только микробы.

На рис. 2 схематически показан поток энергии через три уровня простой цепи питания. Чистая продукция (Пч) равна первичной валовой продукции (Пв) за вычетом потерь на дыхание (Д1):

Пч = Пв - Д1.

Легче всего измерить величины Пч (фактически продуцированная биомасса за период исследования) и Д1 (по количеству выделенного СО2). Следовательно, суммарная ассимиляция продуцентов, или их валовая продукция,


Пв = Пч + Д1.

Часть созданных продуцентами веществ служит кормом (К) растительноядным животным; остальная часть их (Н) оказывается неиспользованной; она в конце концов отмирает и поступает в пищу биоредуцентам. Из количества пищи К, съеденной растительноядными, некоторое количество (А2) ассимилируется, а часть выбрасывается в форме выделений и экскрементов (Э). Из ассимилированного корма (А2) лишь часть идет на образование биомассы растительноядных животных; для создания биомассы используется энергия, выделяемая при дыхании, на что и затрачивается


Рис. 2. Поток энергии через три уровня простой кормовой цепи (П.Дювиньо, М.Танг, 1968): С - свет; Пв - валовая продукция; Пч - чистая продукция; П2, П3 - вторичная продукция; Д1-Д3 - потери на дыхание; К - корм; Н - неиспользуемая энергия; А2 - энергия, ассимилированная в зоомассе; А3 - энергия, ассимилированная хищниками; Э - экскреты, отходы

57

вторая часть ассимилированного корма. Следовательно, вторичная продуктивность (на уровне растительноядных) определяется формулой

П2 = А22.

Поток энергии, проходящий через первый уровень потребления,

А2 = П22.

Хищники не истребляют всех возможных жертв, а из той доли, которую они пожирают и ассимилируют, лишь одна часть вещества используется на создание биомассы этого уровня; другая часть затрачивается на дыхательную энергию.

Поток энергии, проходящий через трофический уровень плотоядных, определяется формулой

А33 + Д3.

Как видно, продукцию, или поток энергии, можно выразить в граммах созданного или ассимилированного вещества (в переводе на сухую массу) за единицу времени. При этом следует принять во внимание, что равные количества различных биологических веществ не обязательно равны и по своим энергетическим показателям. Чтобы измерить поток энергии, протекающий через экосистему в форме ассимилированных органических веществ, необходимо количество последних выразить в одинаковых единицах этой энергии, работы, теплоты (кДж). Обычно принимают следующие соотношения: для 1 г углеводов - 4 кДж; протеинов - 4; липидов - 9; стволовой древесины - 4,5; живых листьев - 4,7; лесной подстилки - 4,5 кДж. Следовательно, при сжигании 1 г абсолютно сухого вещества выделяется 4 кДж энергии.

Представленная схема иллюстрирует хорошо известное явление: живые существа с большими потерями трансформируют энергию; поток энергии (ассимилированного вещества) по пищевой цепи с каждым новым трофическим уровнем резко уменьшается. Иначе говоря, трансформации, происходящие в звеньях цепи питания, имеют очень низкий коэффициент полезного действия.

Экологическая эффективность природной экосистемы определяется отношением (выраженным в %) величины ассимиляции на данном уровне трофической цепи к величине ассимиляции на предыдущем уровне:

А2

Пв