Файл: 4(1) Электрические цепи постоянного тока и методы их расчета.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.10.2020
Просмотров: 174
Скачиваний: 1
Соединение элементов электрической цепи по схемам «звезда» и «треугольник»
В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R12, R13, R24, R34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.
|
|
В мостовой схеме сопротивления R13, R12, R23 и R24, R34, R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24 R34 R23 звездой R2 R3 R4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:
(1.8)
; ; .
Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:
(1.9)
; ; .
После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)
.
1.5. Источник ЭДС и источник тока в электрических цепях
При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением величины внутреннего сопротивления r0 заменяют расчетным эквивалентным источником ЭДС или источником тока.
Рис.
1.14
Источник ЭДС (рис. 1.14) имеет внутреннее сопротивление r0, равное внутреннему сопротивлению реального источника. Стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС.
Для данной цепи запишем соотношение по второму закону Кирхгофа
(1.10)
E = U + Ir0 или E = U - Ir0.
Эта зависимость напряжения U на зажимах реального источника от тока I определяется его вольт-амперной или внешней характеристикой (рис. 1.15). Уменьшение напряжения источника U при увеличении тока нагрузки I объясняется падением напряжения на его внутреннем сопротивлении r0.
|
|
Рис. 1.15 |
Рис. 1.16 |
У идеального источника ЭДС внутреннее сопротивление r0 << Rн (приближенно r00). В этом случае его вольт-амперная характеристика представляет собой прямую линию (рис. 1.16), следовательно, напряжение U на его зажимах постоянно (U=E) и не зависит от величины сопротивления нагрузки Rн.
Рис.
1.17
Источник тока, заменяющий реальный источник электрической энергии, характеризуется неизменным по величине током Iк, равным току короткого замыкания источника ЭДС , и внутренним сопротивление r0, включенным параллельно (рис. 1.17).
Стрелка в кружке указывает положительное направление тока источника. Для данной цепи запишем соотношение по первому закону Кирхгофа
Iк = I0 + I; .
В этом случае вольт-амперная (внешняя) характеристика I(U) источника тока определится соотношением
(1.11)
I = Iк - I0 = Iк - U/r0
и представлена на рис. 1.18.
|
|
Рис. 1.18 |
Рис. 1.19 |
Уменьшение тока нагрузки I при увеличении напряжения U на зажимах ab источника тока, объясняется увеличением тока Iо, замыкающегося в цепи источника тока.
В идеальном источнике тока r0>>Rн. В этом случае можно считать, что при изменении сопротивления нагрузки Rн потребителя Iо0, а IIк. Тогда из выражения (1.11) следует, что вольт-амперная характеристика I(U) идеального источника тока представляет прямую линию, проведенную параллельно оси абсцисс на уровне I = Iк = E/r0 (рис. 1.19).
При сравнении внешних характеристик источника ЭДС (рис. 1.15) и источника тока (рис. 1.18) следует, что они одинаково реагируют на изменение величины сопротивления нагрузки. Покажем, что в обоих случаях ток I в нагрузке определяется одинаковым соотношением.
Ток в нагрузке Rн для схем источника ЭДС (рис. 1.14) и источника тока (рис. 1.17) одинаков и равен .
Для схемы (рис. 1.14) это следует из закона Ома, т.к. при последователь-ном соединении сопротивления r0 и Rн складываются. В схеме (рис. 1.17) ток распределяется обратно пропорционально сопротивлениям r0 и Rн двух параллельных ветвей. Ток в нагрузке Rн
,
т.е. совпадает по величине с током при подключении нагрузки к источнику ЭДС. Следовательно, схема источника тока (рис. 1.17) эквивалентна схеме источника ЭДС (рис. 1.14) в отношении энергии, выделяющейся в сопротивлении нагрузки Rн, но не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания.
Каким из двух эквивалентных источников питания пользоваться, не играет существенной роли. Однако на практике, особенно при расчете электротехнических устройств, чаще используется в качестве источника питания источник ЭДС с внутренним сопротивлением r0 и величиной электродвижущей силы Е.
В тех случаях, когда номинальное напряжение или номинальный ток и мощность источника электрической энергии оказываются недостаточными для питания потребителей, вместо одного используют несколько источников. Существуют два основных способа соединения источников питания: последовательное и параллельное.
Последовательное включение источников питания (источников ЭДС) применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС (рис. 1.20).
Рис. 1.20
Для этой цепи на основании второго закона Кирхгофа можно записать
E1 + E2 + E3 = I(r01 + r02 + r03 + Rн),
откуда
.
Таким образом, электрическая цепь на рис. 1.20 может быть заменена цепью с эквивалентным источником питания (рис. 1.21), имеющим ЭДС Eэ и внутреннее сопротивление rэ.
|
|
При параллельном соединении источников (рис. 1.22) соединяются между собой положительные выводы всех источников, а также их отрицательные выводы. Характерным для параллельного соединения является одно и то же напряжение U на выводах всех источников. Для электрической цепи на рис. 1.22 можно записать следующие уравнения:
I = I1 + I2 + I3; P = P1 + P2 + P3 = UI1 + UI2 + UI3 = UI.
Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями.
1.6. Режимы работы электрической цепи
При подключении к источнику питания различного количества потребителей или изменения их параметров будут изменяться величины напряжений, токов и мощностей в электрической цепи, от значений которых зависит режим работы цепи и ее элементов.
Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников (рис. 1.23).
Рис. 1.23
Двухполюсником называют цепь, которая соединяется с внешней относительно нее частью цепи через два вывода а и b – полюса.
Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит. Для расчета цепей с двухполюсниками реальные активные и пассивные элементы цепи представляются схемами замещения. Схема замещения пассивного двухполюсника П представляется в виде его входного сопротивления
.
Схема замещения активного двухполюсника А представляется эквивалентным источником с ЭДС Eэ и внутренним сопротивлением r0э, нагрузкой для которого является входное сопротивление пассивного двухполюсника Rвх = Rн.
Режим работы электрической цепи (рис. 1.23) определяется изменениями параметров пассивного двухполюсника, в общем случае величиной сопротивления нагрузки Rн. При анализе электрической цепи рассматривают следующие режимы работы: холостого хода, номинальный, короткого замыкания и согласованный.
Работа активного двухполюсника под нагрузкой Rн определяется его вольт-амперной (внешней) характеристикой, уравнение которой (1.10) для данной цепи запишется в виде
(1.12)
U = Eэ - Ir0э.
Эта вольт-амперная характеристика строится по двум точкам 1 и 2 (рис. 1.24), соответствующим режимам холостого хода и короткого замыкания.
В этом режиме с помощью ключа SA нагрузка Rн отключается от источника питания (рис. 1.23). В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения (1.12) напряжение на зажимах ab становится равным ЭДС Eэ и называется напряжением холостого хода Uхх
U = Uхх = Eэ.
Рис. 1.24
В этом режиме ключ SA в схеме электрической цепи (рис. 1.23) замкнут, а сопротивление Rн=0. В этом случае напряжение U на зажимах аb становится равным нулю, т.к. U = IRн, а уравнение (1.12) вольт-амперной характеристики можно записать в виде
(1.13)
.
Значение тока короткого замыкания Iк.з соответствует т.2 на вольт-амперной характеристике (рис. 1.24).
Анализ этих двух режимов показывает, что при расчете электрических цепей параметры активного двухполюсника Eэ и r0э могут быть определены по результатам режимов холостого хода и короткого замыкания:
(1.14)
Eэ = Uхх; .
При изменении тока в пределах активной двухполюсник (эквивалентный источник) отдает энергию во внешнюю цепь (участок I вольт-амперной характеристики на рис. 1.24). При токе I<0 (участок II) источник получает энергию из внешней цепи, т.е. работает в режиме потребителя электрической энергии. Это произойдет, если к зажимам аb двухполюсника присоединена внешняя цепь с источниками питания. При напряжении U<0 (участок III) резисторы активного двухполюсника потребляют энергию источников из внешней цепи и самого активного двухполюсника.
Номинальный режим электрической цепи обеспечивает технические параметры как отдельных элементов, так и всей цепи, указанные в технической документации, в справочной литературе или на самом элементе. Для разных электротехнических устройств указывают свои номинальные параметры. Однако три основных параметра указываются практически всегда: номинальное напряжение Uном, номинальная мощность Рном и номинальный ток Iном.
Работа активного двухполюсника под нагрузкой в номинальном режиме определяется уравнением (1.12), записанном для номинальных параметров
(1.15)
Uном = Eэ - Iномr0э.
На вольт-амперной характеристике (рис. 1.24) это уравнение определяется точкой 3 с параметрами Uном и Iном.
Согласованный режим электрической цепи обеспечивает максимальную передачу активной мощности от источника питания к потребителю. Определим параметры электрической цепи (рис. 1.23), обеспечивающие получение согласованного режима. При подключении нагрузки Rн к активному двухполюснику (рис. 1.23) в ней возникает ток
.
При этом на нагрузке выделится активная мощность
(1.16)
.
Определим соотношение между сопротивлением нагрузки Rн и внутренним сопротивлением r0э эквивалентного источника ЭДС, при котором в сопротивлении нагрузки Rн выделяется максимальная мощность при неизменных значениях Eэ и r0э. С этой целью определим первую производную Р по Rн и приравняем ее к нулю:
.
Так как выражение в знаменателе – конечное, то, отбрасывая не имеющее физического смысла решение Rн = -r0э, получим, что значение сопротивления нагрузки, согласованное с сопротивлением источника
(1.17)
Rн = r0э.
Можно найти вторую производную и убедиться в том, что она отрицательна , поэтому соотношение (1.17) соответствует максимуму функции P = F(Rн).
Подставив (1.17) в (1.16), получим значение максимальной мощности, которая может выделена в нагрузке Rн
(1.18)
.
Полезная мощность, выделяющаяся в нагрузке, определяется уравнением (1.16). Полная активная мощность, выделяемая активным двухполюсником,
.
Коэффициент полезного действия
(1.19)
.
если Rн = r0э, то .
Для мощных электротехнических устройств такое низкое значение КПД недопустимо. Но в электронных устройствах и схемах, где величина Р измеряется в милливаттах, с низким КПД можно не считаться, поскольку в этом режиме обеспечивается максимальная передача мощности на нагрузку.
1.7. Расчет электрических цепей с использованием законов Ома и Кирхгофа
Законы Ома и Кирхгофа используют, как правило, при расчете относительно простых электрических цепей с небольшим числом контуров, хотя принципиально с их помощью можно рассчитать сколь угодно сложные электрические цепи.
При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС или напряжения, сопротивления элементов электрической цепи, и задача сводится к определению токов в ветвях цепи. Зная токи, можно найти напряжения на элементах цепи, мощность, потребляемую отдельными элементами и всей цепью в целом, мощность источников питания и др.
Расчет цепи с одним источником питания
Электрическая цепь, схема которой приведена на рис. 1.25, состоит из одного источника питания, имеющего ЭДС E и внутреннее сопротивление r0, и резисторов R1, R2, R3, подключенных к источнику по смешанной схеме. Операции расчета такой схемы рекомендуется производить в определенной последовательности.
Рис. 1.25
1. Обозначение токов и напряжений на участках цепи.
Резистор R1 включен последовательно с источником, поэтому ток I1 для них будет общим, токи в резисторах R2 и R3 обозначим соответственно I2 и I3. Аналогично обозначим напряжения на участках цепи.
2. Расчет эквивалентного сопротивления цепи.
Резисторы R2 и R3 включены по параллельной схеме и заменяются согласно (1.7) эквивалентным сопротивлением:
.
В результате цепь на рис. 1.25 преобразуется в цепь с последовательно соединенными резисторами R1, R23 и r0. Тогда эквивалентное сопротивление всей цепи запишется в виде:
Rэ = r0 + R1 + R23
3. Расчет тока в цепи источника. Ток I1 определим по закону Ома (1.2):
I1 = U/Rэ
4. Расчет напряжений на участках цепи. По закону Ома (1.1) определим величины напряжений:
U1 = I1R1; U23 = I1R23
Напряжение U на зажимах ab источника питания определим по второму закону Кирхгофа (1.4)для контура I (рис. 1.25):
E = I1r0 + U; U = E - I1r0.
5. Расчет токов и мощностей для всех участков цепи. Зная величину напряжения U23, определим по закону Ома токи в резисторах R2 и R3:
; .
По формуле (1.8) определим величину активной электрической мощности, отдаваемую источником питания потребителям электрической энергии:
P = EI1.
В элементах схемы расходуются активные мощности:
; ; .
На внутреннем сопротивлении r0 источника питания расходуется часть электрической мощности, отдаваемой источником. Эту мощность называют мощностью потерь :
.
6. Проверка правильности расчетов. Эта проверка производится составлением уравнения баланса мощностей (1.8): мощность, отдаваемая источником питания, должна быть равна сумме мощностей, расходуемых в резистивных элементах схемы: