Добавлен: 31.01.2019
Просмотров: 1654
Скачиваний: 3
Современные мощные объединенные энергетические системы Советского Союза позволяют значительно повысить единичную мощность машины. Увеличение мощности генератора ведет к экономии денежных средств и материальных ресурсов при изготовлении и позволяет значительно снизить капиталовложения при строительстве электростанций и годовые расходы при эксплуатации.
Повышение мощности машины связано с увеличением ее диаметра и длины. При современном состоянии металлургии генераторы мощностью 100 тыс. квт имеют предельные габариты по условию механической прочности. Дальнейшее повышение мощности единицы при сохранении габаритов возможно лишь за счет увеличения электромагнитных нагрузок, что в свою очередь осуществимо лишь путем форсированного охлаждения обмоток ротора и статора. Использование водорода с повышенным давлением вместо охлаждающего воздуха позволяет увеличить мощность машины примерно в 1,3 раза, поэтому в настоящее время наблюдается тенденция к форсированному охлаждению крупных электрических машин. Для большей эффективности применяют непосредственное охлаждение обмоток, при котором проводники обмоток находятся в соприкосновении с охлаждающим агентом — водородом или водой. Это позволяет повысить мощность единичного генератора до 800 тыс. квт и более.
Наша электропромышленность изготовляет электрические машины, обладающие высокими техническими показателями самых разнообразных мощностей — от долей ватта до сотен тысяч киловатт. Ведется изготовление машин мощностью 500 тыс. квт в единице. В стадии проектирования находятся генераторы мощностью 800 тыс. квт. Мощность одного такого генератора соответствует суммарной мощности всех электрических станций дореволюционной России.
Бурно растет производство электрических микродвигателей, создаются и усовершенствуются новые виды микромашин. Точность выходных величин у выпускаемых в Советском Союзе микромашин достигает 0,01 % и. выше.
За годы Советской власти со времени принятия плана ГОЭЛРО наша электропромышленность достигла невиданных успехов. Мощность одного генератора увеличилась в 1000 раз (с 500 квт до 500 000 квт). В Советском Союзе создано большое количество электромашиностроительных заводов, конструкторских бюро и научно-исследовательских институтов, разрабатывающих и выпускающих электрические машины, превосходящие во многих случаях по своим показателям машины иностранных фирм.
38)Опыты Фарадея и принцип действия трансформатора
Явление, лежащее в основе действия электрического трансформатора, было открыто английским физиком Майклом Фарадеем в 1831 г. при проведении им основополагающих исследований в области электрической энергии.
В 1831 г. Фарадей показал, что для порождения магнитным полем тока в проводнике необходимо, чтобы поле было переменным. Фарадей изменял напряженность магнитного поля, замыкая и прерывая электрическую цепь, порождающую поле. Тот же эффект достигается, если воспользоваться переменным током, т. е. током, направление которого меняется со временем. Это явление взаимодействия между электрическими и магнитными силами получило название электромагнитной индукции.В трансформаторе обмотка из витков провода, подключенная к источнику питания и порождающая магнитное поле, называется первичной. Другая обмотка, в которой под действием этого поля возникает электродвижущая сила (ЭДС), называется вторичной. Индукция между первичной и вторичной обмоткой взаимна, т. е. ток, протекающий во вторичной обмотке, индуцирует ЭДС в первичной точно так же, как первичная обмотка индуцирует ЭДС во вторичной. Более того, поскольку витки первичной обмотки охватывают собственные силовые линии, в них самих возникает ЭДС. Это явление, называемое самоиндукцией, наблюдается также и во вторичной обмотке. На явлении взаимной индукции и самоиндукции основано действие трансформатора.
Спустя примерно 45 лет появились первые ТС, содержавшие все основные элементы современных устройств. Это событие стало настоящей революцией в молодой тогда области электротехники, связанной с созданием цепей электрического освещения. На рубеже веков электроэнергетические системы переменного тока стали уже общепринятыми, и ТС получил ключевую роль в передаче и распределении электрической энергии. А в дальнейшем он также занял существенное место как в технике электросвязи, так и в радиоэлектронной аппаратуре.
Современные ТС превосходят своих предшественников, созданных к началу XX столетия, по мощности в 500, а по напряжению – в 15 раз; их масса в расчете на единицу мощности снизилась приблизительно в 10 раз, а коэффициент полезного действия близок к 99%.
В своих экспериментах Фарадей опирался на результаты датского физика Ханса Кристиана Эрстеда, который в 1820 г. установил, что ток, проходящий по проводнику, создает вокруг него магнитное поле. Открытие Эрстеда было воспринято с большим интересом, поскольку электричество и магнетизм считались до этого проявлениями совершенно различных и независимых друг от друга сил. И уж если электрический ток мог порождать магнитное поле, то казалось вполне вероятным, что магнитное поле в свою очередь могло порождать электрический ток.
В трансформаторе обмотка из витков провода, подключенная к источнику питания и порождающая магнитное поле, называется первичной. Другая обмотка, в которой под действием этого поля возникает электродвижущая сила (ЭДС), называется вторичной. Индукция между первичной и вторичной обмоткой взаимна, т. е. ток, протекающий во вторичной обмотке, индуцирует ЭДС в первичной точно так же, как первичная обмотка индуцирует ЭДС во вторичной. Более того, поскольку витки первичной обмотки охватывают собственные силовые линии, в них самих возникает ЭДС. Это явление, называемое самоиндукцией, наблюдается также и во вторичной обмотке.
Итак, на явлении взаимной индукции и самоиндукции основано действие трансформатора. Для эффективной работы этого устройства необходимо, чтобы между его обмотками существовала связь и каждая из них обладала высокой самоиндукцией. Этим условиям можно удовлетворить, намотав первичную и вторичную обмотки на железный сердечник так, как это сделал Фарадей в своих первых экспериментах. Железо увеличивает количество силовых линий магнитного поля приблизительно в 10 000 раз. О материалах, обладающих таким свойством, говорят, что они имеют высокую магнитную проницаемость. Кроме того, железный сердечник локализует поток магнитной индукции, благодаря чему обмотки трансформатора могут быть пространственно разделены и все же оставаться индуктивно связанными.
В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же ЭДС в каждом витке, суммарная ЭДС, индуцируемая в обмотке, пропорциональна полному числу ее витков. Если в трансформаторе не происходит потери энергии, мощность в цепи вторичной обмотки должна быть равна мощности, подводимой к первичной обмотке. Другими словами, произведение напряжения на силу тока во вторичной обмотке должно быть равно произведению напряжения и тока в первичной. Таким образом, токи оказываются обратно пропорциональными отношению напряжений в двух обмотках и, следовательно, отношение токов обратно пропорционально отношению числа витков в обмотках. Такой подсчет мощности справедлив лишь в том случае, если токи и напряжения совпадают по фазе; условие высокой самоиндукции обеспечивает пренебрежимо малую величину токов, не совпадающих по фазе.
Идеальный ТС представляет для инженеров-электриков инструмент, аналогичный рычагу в механике, но вместо преобразований силы и перемещения ТС преобразует напряжение и ток. Вместо отношения плеч силы количественной характеристикой трансформатора является отношение между числом витков в его обмотках. Конечно, идеального трансформатора не существует, но практически реализованные устройства очень близки к идеальным. Железный сердечник является непременной составной частью всех современных силовых ТС, а медь благодаря своему низкому электрическому сопротивлению была и остается основным материалом, из которого изготовляют провод для обмоток.
После своего открытия Фарадей не стал детально исследовать открытое явление, полагая, что его работу продолжат другие. Однако в действительности оказалось, что в течение нескольких последующих десятилетий устройства, подобные трансформаторам, не нашли широкого практического применения. Особый интерес представляли первые опыты с «индукторами», состоящими из провода, намотанного на железный сердечник, в частности, изучение способности этих устройств порождать искры, когда ток в обмотке прерывался. Среди известных ученых, занимавшихся этим явлением, был американец Джозеф Генри, первый секретарь и директор Смитсоновского института. Впоследствии его именем была названа единица индуктивности.
В этих экспериментах выяснилось, что токи, циркулирующие в сплошных металлических сердечниках, рассеивали энергию. Чтобы свести к минимуму эти так называемые вихревые токи, сердечники стали делать непроводящими в направлении, перпендикулярном магнитным силовым линиям трансформатора. Теперь сердечники представляли собой «связку» изолированных железных проводов.
39) Начало прмышленного применения трансформатора
В то время в качестве источников питания для работы с трансформаторами использовались батареи, а чтобы получить необходимые изменения тока, первичная цепь периодически прерывалась и замыкалась. После того как в 60-х годах XIX была изобретена динамо-машина – генератор электрической энергии, также основанный на открытиях Фарадея, – появилась возможность использовать переменный ток. Первый, кто подсоединил ТС к источнику переменного тока, был Уильям Гроув, которому для его лабораторных опытов понадобился источник высокого напряжения. Но этот опыт оставался незамеченным до тех пор, пока Томас Альва Эдисон не начал работать над осуществлением идеи электрического освещения в 1880-х годах.
К этому времени уже существовали электрические лампы с платиновыми нитями накала и лампы на основе электрической дуги, или дугового разряда между двумя электродами. Лампы обоих типов работали неплохо, однако их электрические характеристики накладывали некоторые ограничения на способы их включения в электрическую цепь. В частности, все лампы подключались последовательно, подобно елочным гирляндам, поэтому они загорались и гасли одновременно.
Хотя такой способ был приемлем, например, для уличного освещения, невозможность включать и выключать отдельные лампы в произвольные моменты времени, а также высокое напряжение, необходимое при последовательном соединении большого числа осветительных приборов, препятствовали его применению в жилых домах и на небольших предприятиях. Способ же параллельного соединения, в котором каждая лампа работает в своей собственной цепи, требовал слишком толстых медных проводов для подведения достаточно сильного тока к лампам, имевшим в то время относительно низкое сопротивление. Одним из главных изобретений Эдисона была лампа накаливания с угольной нитью, открывшей благодаря своему высокому сопротивлению путь к практической реализации систем параллельного подключения осветительных приборов. Используя эти лампы накаливания и генератор постоянного тока, Эдисон в 1882 г. создал в Нью-Йорке первую промышленную систему электрического освещения.
Приблизительно в то же время ТС были впервые применены в системах электрического освещения в Англии. Французский изобретатель Люсьен Х. Голар и английский промышленник Джон Д. Гиббс воспользовались трансформаторами для подсоединения ламп накаливания к осветительной системе на дуговых лампах. Поскольку дуговые лампы соединялись последовательно, первичные обмотки ТС находились в последовательном соединении с дуговыми лампами. В 1882 г. Голар и Гиббс получили патент на свое устройство, названное ими вторичным генератором. Его работу они продемонстрировали в 1883 г. в Англии, а в 1884 г. – в Италии. Вторичный генератор не нашел широкого применения, однако он стимулировал создание других устройств.
Среди тех, кто заинтересовался работой Голара и Гиббса, были три венгерских инженера из будапештской фирмы Ganz and Company. Они присутствовали при демонстрации действия вторичного генератора в Италии и пришли к выводу, что последовательное соединение имеет серьезные недостатки. По возвращении в Будапешт Макс Дери, Отто Т. Блажи и Карл Циперовский сконструировали и изготовили несколько ТС для систем параллельного соединения с генератором. Их ТС (с замкнутыми железными сердечниками, которые значительно лучше подходили для параллельного соединения, чем «связки» железных проводов с открытыми концами) были двух типов. В первом типе провод наматывался на тороидальный сердечник, во втором, наоборот, железные провода сердечника наматывались вокруг тороидальной «связки» проводников.
В мае 1885 г. Дери, Блажи и Циперновски продемонстрировали на национальной выставке в Будапеште свою систему, которую принято считать прототипом современных осветительных систем. Она состояла из 75 параллельно соединенных ТС, подводивших питание к 1067 лампам накаливания Эдисона от генератора переменного тока с напряжением 1350 В. Тс имели тороидальные железные сердечники.
Система Голара и Гиббса произвела также впечатление на американца по имени Джордж Вестингауз. В 80-х годах Вестингауз был уже признанным изобретателем и промышленником. В то время он работал над системой распределения природного газа для освещения. После успехов, достигнутых Эдисоном, Вестингауз заинтересовался новым источником энергии, но сомневался в возможности ее широкого применения. Его скептицизм был в достаточной степени оправданным. В параллельных системах увеличение нагрузки требовало увеличения силы тока, а нагрузка в масштабах целого города потребовала бы колоссальных токов. Однако передача электрической энергии при больших токах неэффективна. Нужно было либо передавать ток по очень толстым медным проводам, либо строить электрические станции в непосредственной близости от потребителя, разбросав множество мелких генераторов по всей территории города.
Многие специалисты искали способы передачи электрической энергии при более высоком напряжении по сравнению с тем, которое требовалось в потребляющих устройствах. В 1884 г. Вестингауз нанял молодого инженера Уильяма Стэнли, у которого возникла идея воспользоваться ТС для решения проблемы передачи электрической энергии. Узнав о работе Голара и Гиббса, он посоветовал Вестингаузу приобрести патенты на ТС. Стэнли был убежден в преимуществах параллельных схем соединения, и к началу лета 1885 г. им уже было создано несколько ТС с сердечниками замкнутой формы.
Вскоре в связи с ухудшившимся состоянием здоровья Стэнли вынужден был уехать вместе со своей лабораторией из промышленного задымленного Питтсбурга. С одобрения Вестингауза он переселился в Грейт-Бэррингтон, шт. Массачусетс, где продолжал работать над трансформаторами. Тем временем Вестингауз, еще не до конца убежденный в эффективности параллельного соединения, экспериментировал с различными комбинациями вторичных генераторов Голара и Гиббса вместе с другим пионером в области электротехники Оливером Б. Шелленбергером.
К декабрю 1885 г. успехи, достигнутые Стэнли, наконец, убедили Вестингауза и он вместе с Шелленбергом и еще одним блестящим инженером Альбертом Шмидомм приступил к усовершенствованию трансформатора Стэнли, с тем чтобы он (в отличие от венгерского торроидального устройства) стал простым и дешевым в производстве. Сначала сердечник изготавливался из тонких железных пластин в форме буквы Н. Обмотки из изолированной медной проволоки наматывались на горизонтальную часть сердечника, свободные концы которого замыкались дополнительными слоями железных полосок. Стэнли предложил изготавливать железные пластины в форме буквы Ш, чтобы центральный стержень можно было легко вставлять в заранее намотанную катушку. Ш-образные пластины укладывались в чередующихся противоположных направлениях, а на концы пластин укладывались прямые железные полоски для замыкания магнитной цепи. Эта конструкция трансформатора применяется и в наши дни.