Файл: Kots_Ya_M_-_Sportivnaya_fiziologia_Uchebnik_dlya_institutov_fizicheskoy_kultury.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.11.2020
Просмотров: 4337
Скачиваний: 9
СОДЕРЖАНИЕ
Коц Я.М. - Спортивная физиология. Учебник для институтов физической культуры.
Общая физиологическая классификация физических упражнений
Физиологическая классификация спортивных упражнений
Глава 2. Динамика физиологического состояния организма при спортивной деятельности
Предстартовое состояние и разминка
Врабатывание, "мертвая точка", "второе дыхание"
Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)
Физиологические основы мышечной силы
Физиологические основы сноростно-силовых качеств (мощности)
Глава 4. Физиологические основы выносливости
Аэробные возможности организма и выносливость
Кислородтранспортная система и выносливость
Мышечный аппарат и выносливость
Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике
Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков
Роль афферентации (обратных связей) в формировании и сохранении двигательного навыка
Спортивная техника и энергетическая экономичность выполнения физических упражнений
Физиологическое обоснование принципов обучения спортивной технике
Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность
Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха
Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха
Тепловая адаптация (акклиматизация)
Спортивная деятельность в условиях пониженной температуры воздуха (холода)
Острые физиологические эффекты пониженного атмосферного давления
Горная акклиматизация (адаптация к высоте)
Спортивная работоспособность в среднегорье и после возвращения на уровень моря
Смена поясно-климатических условий
Максимальное потребление кислорода
Глава 9. Физиологические особенности спортивной тренировки женщин
Зависимость функциональных возможностей организма от размеров тела
Силовые, скоростно-силовые и анаэробные возможности женщин
Аэробная работоспособность (выносливость) женщин
Менструальный цикл и физическая работоспособность
Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста
Индивидуальное развитие и возрастная периодизация
Возрастньш особенности физиологических функций и систем
Развитие движений и формирование двигательных (физических) качеств
Физиологическая характеристика юных спортсменов
Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом
Два основных функциональных эффекта тренировки
Пороговые тренирующие нагрузки
Специфичность тренировочных эффектов
Функция дыхания
На высоте до 3000-3500 м легочная вентиляция в покое усиливается вначале крайне незначительно. Поэтому сразу часто наблюдается особенно большое снижение парциального давления О2 в альвеолярном воздухе. При выполнении мышечной работы на высоте легочная вентиляция с самого начала существенно больше, чем на равнине. У одного и того же человека при одинаковой абсолютной нагрузке (равном потреблении О2) легочная вентиляция тем сильнее, чем больше высота (рис. 68).
С одной стороны, сниженная плотность воздуха на большой высоте облегчает внешнее дыхание, с другой - при низком барометрическом давлении способность дыхательных мышц повышать внут-ригрудное давление уменьшается. В целом, однако, максимальные возможности дыхательного аппарата на высоте больше, чем на уровне моря. Во время максимальной работы на большой высоте легочная вентиляция может достигать 200 л/мин (табл. 21).
|
В результате вблизи митохондрий давление О2 может быть равно 10 мм рт. ст. на уровне моря и около 5 мм рт. ст даже на высоте 5600 м. Такое давление все еще достаточно, чтобы обеспечить оптимальные условия для протекания окислительных ферментативных реакций в клетках тела.
Парциальное давление О2 в альвеолярном воздухе определяется давлением этого газа во вдыхаемом воздухе и величиной легочной вентиляции. Чем выше последняя, т. е. чем больше обменивается воздух в легких, тем ближе состав альвеолярного воздуха к атмосферному. Однако в любом случае парциальное давление О2 в альвеолярном воздухе может лишь приближаться к таковому в атмосферном (вдыхаемом) воздухе, но не быть равным ему, а тем более не превышать его. Поэтому по мере увеличения высоты (снижения барометрического давления) падает парциальное давление О2 в атмосферном и соответственно в альвеолярном воздухе (см. табл. 20).
Пропорционально падению парциального давления Ог в атмосферном и альвеолярном воздухе снижается парциальное напряжение О2 в артериальной крови (гипоксемия). Это один из важнейших стимулов усиления легочной вентиляции в условиях покоя. Гипоксемия стимулирует хе-морецепторы каротидных и аортальных телец, что рефлекторна усиливает активность дыхательного центра.
Высотная гипервентиляция вызывает усиленное выведение СО2 из крови с выдыхаемым воздухом. В результате по мере подъема на высоту напряжение СО2 в артериальной крови уменьшается, т.е. развивается гипокапния, которая может вызвать развитие мышечных спазмов и обширную вазоконстрикцию. Особенно неблагоприятны для организма последствия сужения сосудов головного мозга.
При усиленном удалении с выдыхаемым воздухом СО2 из крови содержание в ней растворенного СО2 снижается больше, чем бикарбоната. Поэтому вторичным эффектом высотной гипервентиляции является сдвиг реакции крови в щелочную сторону - повышение рН (дыхательный алкалоз). Снижение парциального напряжения СО2 и повышение рН в артериальной крови оказывает тормозящее влияние на дыхательный центр.
|
Падение парциального напряжения О2 в артериальной крови в условиях высотной гипоксии ведет к снижению процентного насыщения гемоглобина кислородом и, следовательно, к уменьшению содержания О2в кро-в и. На высоте 2000-3000 м парциальное давление О2 в альвеолярном воздухе равно примерно 80-60 мм рт. ст., т. е. находится еще в пределах "плоской", верхней, части кривой диссоциации оксигемоглобина (рис. 70). Это гарантирует относительно высокое насыщение кислородом крови в легочных капиллярах - более 90% гемоглобина в форме оксигемоглобина. На большей высоте альвеолярное давление О2 попадает уже на "крутую", среднюю, часть кривой диссоциации оксигемоглобина. Поэтому способность связывать и транспортировать с кровью О2 на большой высоте резко снижается.
Падение насыщения артериальной крови кислородом до 80% от нормальной величины вызывает комплекс симптомов тяжелой гипоксии, известный под названием "горная болезнь": головную боль, состояние усталости, нарушение сна, пищеварения и др.
Во время мышечной работы в условиях высотной гипоксии парциальное напряжение и содержание О2 в артериальной крови снижены, а в венозной крови примерно такие же, что и в обычных условиях. Поэтому системная артерио-венозная разность по кислороду при выполнении одинаковой работы в горных условиях меньше, чем в равнинных (см. табл. 21).
Таблица 21. Показатели кислородтранспортной системы при максимальной аэробной работе у тренированных мужчин на уровне моря и через 2 недели пребывания на высоте
Показатели |
Уровень моря (до 500 м) |
Высота |
|
2300 м |
4000 м |
||
Барометрическое давление (мм. рт. ст.) |
735 |
580 |
460 |
Парциальное давление О2 (мм. рт. ст.): |
|
|
|
во вдыхаемом воздухе |
144 |
112 |
87 |
в альвеолярном воздухе |
120 |
95 |
72 |
в артериальной крови |
107 |
80 |
55 |
разность между альвеолярным воздухом и артериальной кровью |
13 |
15 |
17 |
Внешнее дыхание: |
|
|
|
легочная вентиляция (л/мин, ВТР5) |
165 |
175 |
200 |
вентиляционный эквивалент |
33 |
39 |
57 |
диффузионная способность легких для О2 (л/мин/мм рт. ст., 5ТРО) |
100 |
100 |
100 |
индекс дыхательного обмена (VСО2/VО2) |
1,20 |
1,22 |
1,30 |
Кровь: объем циркулирующей крови (л) |
6,42 |
6,19 |
5,77 |
объем циркулирующей плазмы (л) |
3,16 |
2,95 |
2,55 |
объем циркулирующих эритроцитов (л) |
3,26 |
3,24 |
3,22 |
содержание О2 в артериальной крови (об.%) |
18,5 |
16,8 |
13,5 |
содержание О2 в смешанной венозной крови (об.%) |
1,8 |
1,8 |
1,8 |
артериовенозная разность О2 (об.%) |
96 |
88 |
71 |
рН артериальной крови |
7,30 |
7,25 |
7,20 |
напряжение СО2 в артериальной крови (мм рт. ст.) |
30 |
26 |
20 |
бикарбонат плазмы (мМ/л) |
9,7 |
7,2 |
5,8 |
лактат (мМ/л) |
11,0 |
11,0 |
11,0 |
Кровообращение: |
|
|
|
макс, сердечный выброс (л/мин) |
30,0 |
30,0 |
30,0 |
макс. ЧСС (уд/мин) |
185 |
185 |
185 |
макс, систолический объем (мл) |
162 |
162 |
162 |
макс, кислородный пульс (млО2/уд) |
27 |
24 |
19 |
МПК (л/мин) |
4,81 |
3,60 |
1,51 |
Чем больше высота (сильнее степень гипоксии) и чем интенсивнее нагрузка, тем значительнее падение напряжения и насыщения О2 в артериальной крови.
При выполнении мышечной работы на высоте увеличение концентрации молочной кислоты в мышцах и крови происходит при более низких нагрузках, чем на уровне моря (снижение анаэробного порога). При одной и той же нагрузке концентрация молочной кислоты в мышцах и крови при работе на высоте больше, а рН крови ниже, чем на уровне моря (см. рис. 68). Повышенная на высоте лактацидемия при выполнении субмаксимальных аэробных нагрузок служит дополнительным стимулом для усиления легочной вентиляции.
Максимальная концентрация лактата в крови при работе в первые дни на высоте такая же, что и на уровне моря. Следовательно, максимальная анаэробная мощность, по крайней мере та ее часть, которая определяется лактацидной (гликолити-ческой) системой, на высоте не снижается. Об этом также свидетельствует тот факт, что максимальный кислородный долг в первые дни на высоте такой же, что и на уровне моря.
Функция кровообращения
Пониженное насыщение крови кислородом на высоте компенсируется при выполнении субмаксимальной аэробной работы увеличением сердечного выброса, которое обеспечивается исключительно за счет повышения ЧСС (см. рис. 68). Систолический объем при этом такой же или даже несколько меньше, чем в нормальных условиях.
Показатели артериального кровяного давления заметно не отличаются от равнинных, хотя довольно часто на высоте наблюдается небольшое снижение диастолического давления. Это связано, в частности, с уменьшением периферического сосудистого сопротивления.
Максимальные величины сердечного выброса, ЧСС и систолического объема при предельных аэробных нагрузках одинаковы на уровне моря и на высоте (см. табл. 21). Максимальная ЧСС и максимальный сердечный выброс достигаются в гипоксических условиях при более низкой интенсивности работы, чем на уровне моря.
По мере подъема на высоту коронарный кровоток, с н а б ж е ни е кислородом и потребление его миокардом в условиях покоя уменьшаются. Чтобы покрыть расходы кислорода сердечной мышцей во время напряженной работы, коронарный кровоток на высоте должен быть больше, чем на уровне моря (примерно на 10% на высоте 2500 м и на 30% на высоте 4000 м).
Важным механизмом увеличения сердечного выброса при работе на высоте служит усиленная веноконстрикация, благодаря которой увеличивается центральный объем крови, а следовательно, и венозный возврат. Она возникает в ответ на снижение напряжения СО2 в артериальной крови (гипокапнию).
Помимо увеличения сердечного выброса кислородтранспортные возможности организма при выполнении мышечной работы в условиях гипобарической гипоксии повышаются за счет усиления рабочей гемоконцентрации, что приводит к увеличению содержания, О2 в артериальной крови.
Таким образом, сниженное давление (содержание) кислорода во вдыхаемом воздухе во-время работы на высоте вызывает дополнительное усиление легочной вентиляции, увеличение сердечного выброса и степени рабочей гемоконцентрации по сравнению с условиями на уровне моря. Эти дополнительные механизмы усиливают транспорт О2 к работающим мышцам и другим тканям тела. Однако даже в условиях среднегорья эти адаптационные реакции не могут полностью компенсировать снижение парциального давления и содержания О, з альвеолярном воздухе и артериальной крови. Поэтому в условиях гипобарической гипоксии снижается максимальная аэробная мощность (МПК) и возрастает значение анаэробного энергообразования для обеспечения напряженной мышечной работы.
Скорость потребления О2 в начале работы нарастает медленнее, чем в нормальных условиях.-В значительной мере это обусловлено замедленным врабатыванием системы кровообращения. Поэтому для работы в горных условиях характерен повышенный кислородный дефицит.
Усиленная работа дыхательного аппарата и сердца, а также нарушения в координации движений приводят к тому, что в этих условиях энергетическая стоимость работы выше, чем на уровне моря. Так, на высоте 3500 м-потребление О2 на 5% больше, чем при выполнении той же работы наравнине.
Усиленная деятельность систем дыхания и кровообращения по обеспечению мышечной работы на высоте создает предпосылки для более быстрого, чем на уровне моря, развития утомления.
Во время пребывания на большой высоте происходят изменения в функциональном состоянии нервной системы, в результате которых нарушается нормальная регуляция функций организма.
Снижение МПК
Снижение МПК на высоте определяется уменьшением содержания О2 в артериальной крови.
Очень большие индивидуальные различия в МПК, которые обнаруживаются и на уровне моря, нарастают с увеличением высоты. У более тренированных людей сразу по прибытии на высоту может происходить даже большее снижение МПК, чем у менее тренированных.
Горная акклиматизация (адаптация к высоте)
Термином "горная акклиматизация" обозначается совокупность специфических физиологических приспособлений (адаптации), которые возникают в процессе более или менее длительного непрерывного пребывания на высоте. Эти адаптации уменьшают влияние сниженного давления О2 во вдыхаемом воздухе (гипоксии) на организм человека и повышают его работоспособность в этих специфических условиях.
Основные механизмы естественной адаптации к горным - условиям можно разделить на две категории. Первая обеспечивает усиление транспорта О2к тканям тела, вторая действует на тканевом уровне и направлена на усиление э.ффектив-нос.ти использования О2 клетками для аэробного образования энергии.
Чем длительнее (в некоторых пределах) период пребывания на высоте, тем совершеннее адаптация к ней, тем выше работоспособность на данной высоте. Минимальный период времени, необходимый для высотной акклиматизации, зависит прежде всего от высоты: на высоте 2000-2500 м примерно 7-10 дней, на высоте 3600 м - 15-21, на высоте 4500 м - 21-25. Это лишь примерные сроки, так как многое зависит от индивидуальных особенностей-человека. Вместе с тем при любой длительности пребывания в горах уровень работоспособности, характерный для данного человека на уровне моря, не достигается. У жителя равнины, находящегося на высоте, не может быть такого же уровня экономичности в транспорте и утилизации кислорода, который свойствен постоянным жителям гор. Некоторые люди вообще никогда не акклиматизируются к высоте и страдают от горной болезни. Иногда это наблюдается даже у людей, родившихся в горах.