Файл: Kots_Ya_M_-_Sportivnaya_fiziologia_Uchebnik_dlya_institutov_fizicheskoy_kultury.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.11.2020
Просмотров: 4346
Скачиваний: 9
СОДЕРЖАНИЕ
Коц Я.М. - Спортивная физиология. Учебник для институтов физической культуры.
Общая физиологическая классификация физических упражнений
Физиологическая классификация спортивных упражнений
Глава 2. Динамика физиологического состояния организма при спортивной деятельности
Предстартовое состояние и разминка
Врабатывание, "мертвая точка", "второе дыхание"
Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)
Физиологические основы мышечной силы
Физиологические основы сноростно-силовых качеств (мощности)
Глава 4. Физиологические основы выносливости
Аэробные возможности организма и выносливость
Кислородтранспортная система и выносливость
Мышечный аппарат и выносливость
Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике
Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков
Роль афферентации (обратных связей) в формировании и сохранении двигательного навыка
Спортивная техника и энергетическая экономичность выполнения физических упражнений
Физиологическое обоснование принципов обучения спортивной технике
Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность
Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха
Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха
Тепловая адаптация (акклиматизация)
Спортивная деятельность в условиях пониженной температуры воздуха (холода)
Острые физиологические эффекты пониженного атмосферного давления
Горная акклиматизация (адаптация к высоте)
Спортивная работоспособность в среднегорье и после возвращения на уровень моря
Смена поясно-климатических условий
Максимальное потребление кислорода
Глава 9. Физиологические особенности спортивной тренировки женщин
Зависимость функциональных возможностей организма от размеров тела
Силовые, скоростно-силовые и анаэробные возможности женщин
Аэробная работоспособность (выносливость) женщин
Менструальный цикл и физическая работоспособность
Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста
Индивидуальное развитие и возрастная периодизация
Возрастньш особенности физиологических функций и систем
Развитие движений и формирование двигательных (физических) качеств
Физиологическая характеристика юных спортсменов
Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом
Два основных функциональных эффекта тренировки
Пороговые тренирующие нагрузки
Специфичность тренировочных эффектов
По длительности пребывания на высоте различают 4 степени акклиматизации: 1) острая - до 30 мин, 2) кратковременная - несколько недель, 3) длительная - несколько месяцев, 4) постоянная - постоянное проживание на высоте.
Основные механизмы адаптации к условиям гипобарической гипоксии включают:
-
увеличение легочной вентиляции и сопровождающие ее изменения в кислотно-щелочном равновесии в крови и-других тканях;
-
усиление диффузионной способности легких;
-
повышение содержания эритроцитов и гемоглобина в крови; изменения на тканевом уровне.
Физиологические показатели во время максимальной аэробной работы у высокотренированного человека после кратковременной акклиматизации на разных высотах приведены в табл. 21.
По возвращении в равнинные условия требуется нескольш недель, чтобы легочная вентиляция достигла обычного уровня.
Диффузионная способность легких изменяется в процессе горной акклиматизации крайне медленно. Так, даже после 6 месяцев пребывания на высоте 5800 м не обнаруживается заметных изменений в диффузионной способности легких. Вместе с тем у постоянных жителей и долгожителей больших высот она заметно выше, чем у жителей равнины.
У людей, длительно живущих на высоте, общая поверхность легких для диффузии газов может несколько увеличиваться, прежде всего за счет увеличения площади альвеол и объема (поверхности) легочных капилляров благодаря постоянному их растяжению - дилятации. Это ведет к утончению альвеолярно-капиллярной мембраны, что благоприятствует диффузии через нее молекул О2. Замедление кровотока через расширенные легочные капилляры также улучшает условия для диффузии О2.
У постоянных жителей высокогорных районов все легочные емкости (общая, жизненная, функциональная остаточная) и остаточный объем легких увеличены по сравнению с жителями равнины.
Основные адаптационные изменения в системе крови направлены на повышение ее кислородтранспортных возможностей.
Акклиматизация к высоте является, по существу, адаптацией к низкому парциальному напряжению О2и СО2 в крови и других тканях. Высотная гипервентиляция препятствует падению парциального давления О2 в альвеолярном воздухе и соответственно в артериальной крови. Однако степень уменьшения парциального напряжения О2 в артериальной крови, наблюдаемая сразу по прибытии на высоту, остается постоянной на протяжении нескольких недель акклиматизации. При кратковременном пребывании на высоте вместе с ростом легочной вентиляции продолжает падать парциальное напряжение СО2 в артериальной крови. Однако в результате длительной высотной акклиматизации оно повышается, что выявляется как в условиях покоя, так и особенно во время мышечной работы.
Кислотно-щелочное равновесие в крови и других жидкостях тела за несколько дней пребывания на высоте постепенно восстанавливается благодаря усиленной экскреции щелочей (бикарбонатов) из крови через почки и их удалению с мочой. Усиленная экскреция бикарбонатов из крови заканчивается, когда ее рН восстанавливается до нормальных величин (около 7,40). Снижение алкалоза ведет к дальнейшему усилению легочной вентиляции.
Уменьшение содержания буферных оснований (щелочного резерва) в крови у людей, акклиматизированных к большой высоте, имеет отрицательный эффект: снижается способность противостоять ацидозу, который возникает при мышечной работе в связи с образованием и выделением в кровь метаболических кислот (прежде всего молочной кислоты); это может быть одной из причин снижения работоспособности.
Концентрация лактата в артериальной крови при выполнении стандартной субмаксимальной аэробной нагрузки снижается по мере акклиматизации к высоте. Максимальная для данного человека концентрация лактата в крови также несколько уменьшается в процессе длительной высотной акклиматизации. Объем плазмы крови в течение первых нескольких дней пребывания на высоте уменьшен по сравнению с объемом на равнине. Поэтому увеличен показатель гематокрита и повышена концентрация эритроцитов и гемоглобина в крови. При этом чем больше высота, тем сильнее потери плазмы (выше степень гемоконцентра-ции).
Так, после недели пребывания на высоте 2300 м объем плазмы уменьшен в среднем на 8%, на высоте 4300 м - на 16%. В первом случае гематокрит увеличен на 4%, концентрация гемоглобина - на 10%, а во втором соответственно на 6 и 20%. У альпинистов во время экспедиции на Гималаи объем плазмы на протяжении нескольких недель был на 29% ниже уровня в равнинных условиях.
Начальное уменьшение объема плазмы является следствием общей дегидратации в результате гипервентиляции и усиленного потоотделения. Недостаточное потребление воды в первые дни пребывания в горах может усиливать дегидратацию. Поскольку в этот период нет чувства повышенной жажды, принимать жидкость следует даже в отсутствие субъективной потребности в ней. В процессе дальнейшего пребывания на высоте объем циркулирующей плазмы восстанавливается до исходного ("равнинного") уровня. В условиях среднегорья для этого требуется несколько месяцев.
Содержание эритроцитов и гемоглобина в крови в первые дни пребывания на высоте повышается в связи с гемоконцентрацией, вызванной потерей части циркулирующей в сосудистом русле плазмы. Гемоконцентрация обеспечивает поддержание нормального содержания О2 в артериальной крови и поэтому играет важную роль в быстрой адаптации организма к гипок-сическим условиям.
В первые же дни пребывания в горах усиливается эритропоэз, ведущий к истинному увеличению числа эритроцитов в крови (Н. Н. Сиротинин). Оно становится заметным уже на 3- 4-й день пребывания на высоте свыше 3000 м. Увеличивается число циркулирующих в крови ретикулоцитов и эритроцитов больших размеров. Степень увеличения общего количества и соответственно концентрации эритроцитов на высоте до 4800 м находится в линейной зависимости от высоты и длительности пребывания в горах. При увеличении высоты до 6000 м эритропоэз падает. У альпинистов после нескольких дней пребывания на высоте более 7000 м содержание эритроцитов достигает 8,5 млн/мм3. У постоянных жителей гор оно тем больше, чем больше высота проживания:
Высота (м) |
0 |
1000 |
1500 |
2500 |
3500 |
4500 |
5500 |
6500 |
Содержание эритроцитов (млн/мм3) |
5,3 |
5,4 |
5,5 |
5,8 |
6,2 |
6,6 |
7,3 |
8,2 |
За счет увеличения общего количества (массы) эритроцитов у акклиматизированного к высоте человека повышен объем циркулирующей крови.
Гемоконцентрация, происходящая в начале высотной акклиматизации, и более поздно наступающее истинное увеличение числа эритроцитов в циркулирующей крови приводят к повышению гематокрита и вязкости крови, что, в свою очередь, ведет к повышению периферического сосудистого сопротивления и тем самым влияет на гемодинамику. Небольшие изменения содержания эритроцитов (гематокрита) не оказывают заметного влияния на вязкость крови. Только зна-чительное увеличение их концентрации, которое наблюдается, например, у жителей высокогорных районов, может оказывать определенное отрицательное влияние на циркуляцию крови.
Образование дополнительного количества гемоглобина вначале несколько задерживается по сравнению с ростом числа эритроцитов, но в процессе акклиматизации постепенно усиливается, растет концентрация гемоглобина в крови и, таким образом, повышается кислородная емкость крови (табл. 22). Средняя концентрация гемоглобина в эритроцитах при этом не изменяется. Повышение концентрации гемоглобина позволяет поддерживать нормальное или даже несколько повышенное содержание О2 в артериальной крови, несмотря на сниженный процент насыщения ее кислородом.
Таблица 22. Показатели крови в покое у акклиматизированных людей на разных высотах
Высота, м |
ОЦК, мл/кг веса тела |
Концентраций гемоглобина, г%. |
Кислородная емкость крови, об% |
% насыщения крови О2, % |
Содержание О2 в артер. крови, об% |
0 (уровень моря) |
79,6 |
15,3 |
20,0 |
97 |
20,0 |
3100 |
83,0 |
16,8 |
22,5 |
91 |
20,5 |
3600 |
96,0 |
18,8 |
25,2 |
87 |
21,9 |
4600 |
104,0 |
20,7 |
27,8 |
81 |
22,4 |
6500 |
- |
24,8 |
33,3 |
65 |
21,7 |
Увеличение числа эритроцитов и концентрации гемоглобина происходит в условиях среднегорья очень медленно. Оно тем больше, чем больше высота и длительнее пребывание на ней. На очень большой высоте концентрация гемоглобина в крови нарастает быстро и значительно. У постоянных жителей гор она составляет более 20 г%. На каждые 300 м прироста высоты концентрация гемоглобина в крови увеличивается в среднем на 2,1% у мужчин и на 1,8% у женщин.
Кривая диссоциации оксигемоглобина в процессе горной акклиматизации смещается вправо, что облегчает снабжение тканей кислородом. Особенно это важно для работающих мышц. Одним из механизмов такого сдвига может быть повышение концентрации 2,3-ДФГ в эритроцитах, что наблюдается у людей, постоянно проживающих в горах. Однако даже после полной акклиматизации на высоте снабжение тканей кислородом затруднено, особенно при напряженной мышечной работе, из-за сниженного парциального напряжения О2 в артериальной крови (табл. 23).
Таблица. 23. Показатели крови в покое и при максимальной аэробной работе на различных высотах (по Д. Фолкнеру, 1971)
Высота (м) и барометрич. давление, мм рт. ст. |
Условия |
Концентрация гемоглобина, т% |
Парциальное давление О2 в артериальной крови, мм рт. ст |
% насыщения артериальной крови Ог, % |
Содержание О2 в артериальной крови, об% |
0 (760) |
Покой |
15,1 |
105 |
97 |
19,6 |
2300 (580) |
Покой |
16,6 |
75 |
93 |
20,6 |
3100 (520) |
Покой |
17,2 |
67 |
80 |
20,7 |
4300 (420) |
Покой |
18,2 |
52 |
84 |
20,5 |
Изменения в системе кровообращения
Первые дни пребывания в горах сердечный выброс при выполнении субмаксимальной аэробной работы больше, чем на уровне моря. Затем он постепенно снижается и в течение нескольких недель достигает величины, характерной для равнинных условий. Градуальное снижение его происходит по мере повышения кислородной емкости крови (концентрации гемоглобина).
ЧСС при относительно небольших нагрузках в первый период пребывания в горах повышена, но на поздних этапах акклиматизации становится такой же, что и на уровне моря (см. рис. 72). При выполнении работы очень большой мощности у акклиматизированных людей она даже ниже, чем на равнине.
Максимальный сердечный выброс в условиях среднегорья вначале не изменяется, но по мере пребывания в горах несколько снижается, что является результатом уменьшения систолического объема, так как максимальная ЧСС остается обычно неизменной. В то же время на большой высоте максимальный сердечный выброс заметно снижается - как за счет уменьшения систолического объема, так и за счет снижения ЧСС. Уменьшение максимальной ЧСС в условиях горной гипоксии связано с усилением парасимпатической активности, как одного из механизмов, горной адаптации.
У акклиматизированных к высоте жителей равнины во время пребывания в горах периферическое сосудистое сопротивление снижено. Стимулом для расширения коронарных сосудов, сосудов головного мозга и всех других сосудов служит гипоксия. Без такого компенсаторного расширения их увеличенный объем крови, ее повышенная вязкость и низкое насыщение кислородом создавали очень большую нагрузку для работы сердца. У постоянных жителей высокогорья артериальное давление несколько ниже, чем у жителей равнины. У живущих на. высоте более 3000 м происходит повышение давления в легочном (малом) круге кровообращения с высоким сопротивлением в легочных сосудах и гипертрофией правого желудочка сердца. Это обеспечивает более равномерное соотношение вентиляции и перфузии в легких, что уменьшает различия в давлении О2 между альвеолярным воздухом и артериальной кровью. Указанные изменения лиц1ь очень постепенно исчезают при возвращении на равнину.
Основные изменения в тканях, происходящие в условиях пониженного парциального напряжения О2, направлены на повышение эффективности получения и утилизации кислорода для аэробного образования энергии.
Эти адаптационные изменения заключаются в следующем:
-
усиление капилляризации тканей (увеличение числа и плотности капилляров);
-
повышение концентрации миоглобина в скелетных мышцах;
-
увеличение содержания митохондрий;
-
увеличение содержания и активности окислительных ферментов.
В отличие от описанных физиологических механизмов адаптации эти изменения требуют длительного времени и потому обнаруживаются лишь у людей, долго проживающих на больших высотах.
Чем меньше возраст, с которого человек проживает в горах, тем больше адаптационные изменения. Оптимальное время акклиматизации к длительному проживанию в горах - период роста и развития ребенка.
Изменение МПК
|
Так, у спортсменов высокого класса по прибытии в Мехико-сити (2300 м) МПК снизился на 14%. Через 19 дней уменьшение еще составляло 6% по отношению к исходному МПК: У 8 спортсменов международного класса начальное снижение МПК составляло в среднем 16% (индивидуальные колебания от 9 до 22%), а через 19 дней - 11% (от 6 до 16%).