Файл: Kots_Ya_M_-_Sportivnaya_fiziologia_Uchebnik_dlya_institutov_fizicheskoy_kultury.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.11.2020

Просмотров: 4227

Скачиваний: 9

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Коц Я.М. - Спортивная физиология. Учебник для институтов физической культуры.

Оглавление

Общая физиологическая классификация физических упражнений

Физиологическая классификация спортивных упражнений

Глава 2. Динамика физиологического состояния организма при спортивной деятельности

Предстартовое состояние и разминка

Врабатывание, "мертвая точка", "второе дыхание"

Устойчивое состояние

Утомление

Восстановление

Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)

Физиологические основы мышечной силы

Физиологические основы сноростно-силовых качеств (мощности)

Глава 4. Физиологические основы выносливости

Аэробные возможности организма и выносливость

Кислородтранспортная система и выносливость

Мышечный аппарат и выносливость

Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике

Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков

Роль афферентации (обратных связей) в формировании и сохранении двигательного навыка

Двигательная память

Автоматизация движений

Спортивная техника и энергетическая экономичность выполнения физических упражнений

Физиологическое обоснование принципов обучения спортивной технике

Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность

Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха

Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха

Тепловая адаптация (акклиматизация)

Питьевой режим

Спортивная деятельность в условиях пониженной температуры воздуха (холода)

Глава 7. Спортивная работоспособность в условиях пониженного атмосферного давления (среднегорья и при смене поясно-климатических условий

Острые физиологические эффекты пониженного атмосферного давления

Горная акклиматизация (адаптация к высоте)

Спортивная работоспособность в среднегорье и после возвращения на уровень моря

Смена поясно-климатических условий

Глава 8. Физиология плавания

Механические факторы

Максимальное потребление кислорода

Кислород транспортная система

Локальные (мышечные) факторы

Терморегуляция

Глава 9. Физиологические особенности спортивной тренировки женщин

Зависимость функциональных возможностей организма от размеров тела

Силовые, скоростно-силовые и анаэробные возможности женщин

Аэробная работоспособность (выносливость) женщин

Менструальный цикл и физическая работоспособность

Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста

Индивидуальное развитие и возрастная периодизация

Возрастньш особенности физиологических функций и систем

Развитие движений и формирование двигательных (физических) качеств

Физиологическая характеристика юных спортсменов

Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом

Два основных функциональных эффекта тренировки

Пороговые тренирующие нагрузки

Специфичность тренировочных эффектов

Обратимость тренировочных эффектов

Тренируемость

Даже постоянно проживающие в горах тренированные спортсмены имеют более низкий показатель МПК на своей высоте, чем на уровне моря. Например, у спортсменов, проживающих постоянно на высоте 3100 м, МПК было на 27% ниже, чем на уровне моря.

Увеличению (восстановлению) МПК на высоте способствуют многообразные механизмы компенсаторной адаптации к гипокей"-ческим условиям: усиление легочной вентиляции, повышение диффузионной способности легких, увеличение кислородной емкости крови, общего объема циркулирующей крови, сердечного выброса, усиление капилляризации скелетных мышц и миокарда, повышение содержания миоглобина в скелетных мышцах, митохондрий в мышечных клетках, рост активности окислительных ферментов и т. д.

Когда человек возвращается на равнину, он на протяжении нескольких недель постепенно утрачивает ту адаптацию к условиям гипобарической гипоксии, которая произошла у него в горах.

Спортивная работоспособность в среднегорье и после возвращения на уровень моря

Физическая работоспособность человека снижается по мере подъема на высоту. Прежде всего и главным образом это касается аэробной работоспособности (выносливости) снижение которой отмечается уже на высоте 1200 м. В этом отношении нет никаких различий между тренированными и нетренированными людьми. Как у тех, так и у других в начале пребывания в горах работоспособность снижается примерно одинаково по отношению к равнинному уровню. На значительной высоте симптомы горной болезни столь же часто и даже в более выраженной степени наблюдаются у спортсменов.

Спортивная работоспособность при выполнении скоростно-сиповых (анаэробных) упражнений

Мышечная сила и мощность, а также координация движений при кратковременных максимальных усилиях практически не изменяются при подъеме в горы или при дыхании газовой смесью с низким содержанием кислорода. Поэтому в непродолжительных (до 1 мин) спортивных упражнениях скоростно-силового характера и упражнениях на координацию, выполняемых в горных условиях, не наблюдается явного снижения результатов по сравнению с равнинными. Более того, на высоте из-за сниженной плотности воздуха (сопротивления перемещению) результаты на спринтерских дистанциях (особенно в велогонках) Могут быть даже выше, чем на уровне моря.

Следует, однако, иметь в виду, что восстановительные процессы в организме протекают на высоте замедленно. Поэтому повторное выполнение даже кратковременных упражнений в этих условиях вызывает более быстрое наступление утомления (снижение работоспособности), чем на уровне моря.

Для участия в соревнованиях, проводимых на высоте в скорост-но-силовых и координационных упражнениях, не требуется специальной предварительной акклиматизации спортсмена к этой высоте. Если спортсмен не страдает горной болезнью, срок его прибытия на соревнования может быть выбран произвольно,


Спортивная работоспособность при выполнении упражнений на выносливость

Результаты в спортивных упражнениях с предельной продолжительностью более 1-й мин на высоте ниже, чем на уровне моря. Исключение составляют относительно непродолжительные упражнения, на результат которых большое влияние оказывает величина сопротивления (плотность) воздуха, например велогонки на треке. Снижение физиологических возможностей спортсмена в этих упражнениях компенсируется улучшением механических условий их выполнения.

В некоторых: пределах чем больше дистанция (предельная продолжительность упражнения), тем значительнее снижение результата. Чем больше высота, тем сильнее падение физической аэробной работоспособности, идущее параллельно с уменьшением МПК. Снижение аэробной производительности является главной причиной уменьшения выносливости на высоте. В связи со снижением работоспособности переносимая интенсивность тренировочных нагрузок с высотой уменьшается.

По мере развития механизмов, адаптирующих организм человека к высотной гипоксии, улучшается, хотя и не очень значительно и не во всех случаях, его физическая работоспособность на данной высоте. При этом для адаптации к выполнению более продолжительных упражнений на высоте требуется и более длительный период акклиматизации. Чтобы достигнуть хорошего результата на. высоте 2000 м и больше в упражнениях околомаксимальной и максимальной аэробной мощности, необходим минимальный период акклиматизации (2-3 недели). Дальнейшее пребывание в условиях среднегорья слишком мало улучшает аэробную работоспособность и поэтому неоправданно.

Хорошо тренированные люди не акклиматизируются к большим высотам быстрее или более эффективно, чем нетренированные. Высота влияет на работоспособность постоянных жителей гор, как и на работоспособность жителей равнины. Как и у жителей равнины, спортивные результаты у постоянных жителей горной местности снижаются на высоте по мере увеличения дистанции (времени работы) по сравнению с их равнинными результатами.

Как следует из изложенного, акклиматизация к высотной гипоксии вызывает физиологические изменения, во многих отношениях сходные с теми, которые происходят в процессе тренировки выносливости на уровне моря. И в том, и в другом случае повышаются аэробные возможности организма, связанные с его кислород-транспортными возможностями и способностью тканей (работающих мышц) утилизировать Ог для аэробной энергопродукции. Возникает вопрос, может ли тренировка на высоте вызывать дополнительные физиологические изменения, усиливающие аэробную производительность и физическую аэробную работоспособность (выносливость) у спортсменов на равнине? Другими словами, повышается ли работоспособность на уровне моря после пребывания на высоте, более ли эффективна тренировка на высоте, чем такая же тренировка на уровне моря? Научные данные относительно эффекта проживания и тренировки на высоте с целью повышения выносливости в равнинных условиях довольно противоречивы,



Рис. 74. МПК, определяемое у двух групп спортсменов в разные дни тренировок на высоте 2300 м и на уровне моря (по У. Адамо и др., 1975)


Рис. 75. Динамика МПК на протяжении. 2 месяцев (А) и спортивных результатов на протяжении 1 месяца (Б) после возвращения из среднегорья (Ф. П. Суслов, 1983). За 100% приняты показатели на равнине до пребывания в горах

Несомненно, что люди, постоянно проживающие в горных условиях, имеют преимущества в соревновании на выносливость, если оно проводится в тех же условиях, перед спортсменами, постоянно живущими на уровне моря. Во время максимальной аэробной работы на средней высоте постоянные жители гор имеют более высокие кислородную емкость крови, сердечный выброс, системную АВР-О2 и соответственно МПК, чем жители равнины того же уровня тренированности.

С другой стороны, постоянное или длительное проживание на большой высоте не дает преимущества в отношении аэробной выносливости, проявляемой на равнине. У хорошо тренированных спортсменов проживание и интенсивная тренировка в среднегорье в течение нескольких недель не всегда дают дополнительный эффект по сравнению с эквивалентной тренировкой на уровне моря (рис. 74). Даже длительное пребывание на очень большой высоте не оказывает достоверного влияния на равнинные показатели аэробной работоспособности.

При анализе влияния, подготовки в среднегорье на результаты выступления в равнинных условиях необходимо иметь в виду значительные индивидуальные вариации: у одних спортсменов такая подготовка приводит к повышению равнинных результатов, у других - к снижению, на третьих вообще не оказывает заметного влияния. Кроме, того, важно учитывать, что функциональное состояние и спортивная работоспособность в период реакклиматизации носят выраженный фазный характер (рис. 75): повышение спортивной работоспособости чередуется с временным ее снижением. Вероятно, важную роль для повышения равнинной работоспособности играет специальная организация тренировочного процесса в горных условиях, а также период реакклиматизации.

В процессе длительного пребывания в горных условиях в организме возникают адаптационные изменения, которые способствуют повышению работоспособности в этих специфических условиях. Вместе с тем эти изменения не дают заметного преимущества при выполнении работы в иных специфических условиях, в частности на уровне моря. Все это означает, что спортивная тренировка должна проводиться преимущественно (если не исключительно) в тех же условиях, в которых проводятся соревнования.

Смена поясно-климатических условий

Выработанная в процессе эволюции взаимосвязь организма с внешней средой - необходимое условие его существования, материалистически обоснованное еще в работах И. М. Сеченова. Природные факторы подвержены периодическим изменениям. Все проявления жизнедеятельности организма человека также не остаются постоянными и имеют ритмический характер. Ведущее положение при этом занимает суточный ритм, эволюционно обусловивший суточную периодику физиологических функций у живых организмов.


Суточная цикличность большинства функций у человека обнаруживает себя в первые же дни после рождения. Это выражается в неодинаковом функциональном состоянии прежде всего нервной системы, крайние формы проявления которого человек переживает а виде сна и бодрствования. Неодинаковое состояние ЦНС в течение суток во многом определяет различную активность других физиологических систем организма. У взрослого человека показатели кровообращения, дыхания, температуры тела и других функций минимальны ночью, с 2 до 4 ч. Оптимально активными физиологические процессы сохраняются до 13-14 ч. После некоторого-снижения в дневные часы их уровень повышается вновь к вечеру, затем прогрессивно снижается до минимальных значений.

Суточный ритм физиологических отправлений - температуры тела, обменных реакций, сна и бодрствования-достаточно стойкий. Ритм физической работоспособности в разные периоды суток менее четкий и может существенно изменяться под влиянием соревновательных или чрезвычайно напряженных тренировочных нагрузок. Ритм этих изменений обычно соответствует стереотипности образа жизни. Как правило, работоспособность оказывается выше в дневные часы и ниже в утренние и ночные. При этом наибольшими колебаниями (до 7-10%) подвержены показатели в упражнениях скоростно-силового характера: легкоатлетических прыжках, метаниях и т. д. Менее значительные изменения наблюдаются в результатах упражнений на выносливость. В официальных соревнованиях лучшие результаты в большинстве случаев спортсмены показывают в ранние вечерние часы.

При быстром перемещении (перелете) с востока на запад или наоборот, после пересечения нескольких часовых поясов, происходит рассогласование суточных ритмов психофизиологических функций с новым поясным временем. При этом в первые дни после перелета они не согласуются со сменой дня и ночи нового места жительства (внешний десинхроноз), а позднее в результате неодинаковой скорости перестройки происходит их взаимное рассогласование - внутренний десинхроноз.

Выраженность десинхроноза, характер и скорость адаптационной перестройки функций в новых поясно-климатических условиях зависят от величины поясно-временного сдвига, направления перелета, контрастности погодно-климатического режима в пунктах постоянного и временного проживания, специфических особенностей двигательной деятельности спортсменов.

Заметное изменение функционального состояния организма человека наблюдается уже при пересечении 2-3 часовых поясов. Существенное нарушение суточного ритма функций происходит при быстром перемещении в местность с 4-5- и особенно с 7-8-часовой поясной разницей.

Так, при перелете из Хабаровска в Москву утренние (в 7 ч) показатели функций, отражая привычный дневной ритм (14-15 часов хабаровского времени), значительно отличаются от аналогичных параметров, зарегистрированных перед перелетом: ЧСС превышает исходные (утренние) величины на 10-15 уд/мин, артериальное систолическое давление - на 8-12 мм рт. ст., минутный объем дыхания- на 1,5-3 л/мин, температура тела - на 0,4-0,9°. Вечером эти показатели либо снижаются (отражая ночной ритм функций, свойственный хабаровскому времени), либо не изменяются, поддерживаемые двигательной деятельностью.


Поясно-климатическая адаптация заключается не только в выработке нового суточного ритма основных жизненных функций, но и в более глубоких процессах на клеточном и тканевом уровне, биологическое значение которых состоит в достижении адекватной меж- и внутрисистемной интеграции деятельности физиологических систем в новых условиях жизни.


Рис. 76. Динамика функциональных показателей при перелете спортсменов на 7 часовых поясов западнее постоянного местожительства (по О. П. Панфилову). А - анаэробная работоспособность (15 прыжков вверх за 30 с): горизонтальная штриховка-до перелета, без штриховки - после перелета; Б - работоспособность (среднее время проплывания 200 м разными способами, МПК (столбики) и сумма ЧСС за 3 мин

Особенность перестройки в значительной мере определяется соотношением эндогенного и экзогенного ритмов. При перелете на 7-8 часовых поясов в западном направлении экзогенный ритм, совмещаясь с эндогенным в течение определенного периода суток (включая фазы минимума и максимума активности функции), способствует "размыванию" суточной ритмики, что обусловливает относительно быстрое формирование нового суточного стереотипа функционального состояния. При перелете на 7-8 часовых поясов в восточном направлении экзогенный ритм в основном находится в противофазе по отношению к эндогенному. Данное обстоятельство является фактором, усложняющим, тормозящим адаптационную перестройку организма на новые условия жизни.

При возвращении в место постоянного жительства реадаптация протекает в более короткий период, чем адаптация.

Существенное влияние на адаптационные процессы оказывает специфика двигательной деятельности. У представителей скоростно-силовых видов спорта и спортивных игр адаптационные реакции выражены больше, но протекают быстрее, чем у представителей видов спорта, требующих проявления выносливости.

Так, у первых сразу после перелета в западном направлении значительное Повышение температуры тела (с 36 до 36,8-37,2°), скорости оседания эритроцитов (до 200%), ЧСС (на 12-20 уд/мин), максимального АД (на 10-15 мм рт. ст.) сменяется быстрым (в течение 6-9 суток) восстановлением исходной реактивности и суточного биоритма. У вторых меньшее повышение скорости оседания эритроцитов (до 150-160%). ЧСС (на 10-15 уд/мин), максимального АД (на 6- 10 мм рт. ст.) и температуры тела (с 35,7 до 36,3-36,5°) сопровождается более продолжительной (до 13-15 суток) их перестройкой.

Динамика специальной работоспособности спортсменов в новых поясно-климатических условиях представляет собой последовательную смену фаз: снижения на 0,7-5,5% (на 2-5-е сутки после перелета), неполного восстановления (на 6-10-е сутки) и превышения в последующем ее исходного уровня на 1-3,5% (рис. 76, А). Расчетное определение МПК показывает, что на 2-3-й сутки временного проживания в отдаленной местности этот показатель снижается на 1,5 мл/кг, мин, затем возрастает (относительно исходного уровня) в период с 7-го по 13-й день адаптации на 2,9 мл/кг "мин и практически восстанавливается на 18-20-е сутки адаптации. Соответственно этому изменяется работоспособность и пульсовая сумма за 3 мин восстановительного периода (рис. 76, Б). Данный феномен представляет собой результат мобилизации функционального резерва организма в усложненных условиях деятельности. Одним из механизмов этой мобилизации является усиление адаптационно-трофической функции симпатической нервной системы.