Файл: Kots_Ya_M_-_Sportivnaya_fiziologia_Uchebnik_dlya_institutov_fizicheskoy_kultury.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.11.2020
Просмотров: 4350
Скачиваний: 9
СОДЕРЖАНИЕ
Коц Я.М. - Спортивная физиология. Учебник для институтов физической культуры.
Общая физиологическая классификация физических упражнений
Физиологическая классификация спортивных упражнений
Глава 2. Динамика физиологического состояния организма при спортивной деятельности
Предстартовое состояние и разминка
Врабатывание, "мертвая точка", "второе дыхание"
Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)
Физиологические основы мышечной силы
Физиологические основы сноростно-силовых качеств (мощности)
Глава 4. Физиологические основы выносливости
Аэробные возможности организма и выносливость
Кислородтранспортная система и выносливость
Мышечный аппарат и выносливость
Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике
Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков
Роль афферентации (обратных связей) в формировании и сохранении двигательного навыка
Спортивная техника и энергетическая экономичность выполнения физических упражнений
Физиологическое обоснование принципов обучения спортивной технике
Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность
Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха
Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха
Тепловая адаптация (акклиматизация)
Спортивная деятельность в условиях пониженной температуры воздуха (холода)
Острые физиологические эффекты пониженного атмосферного давления
Горная акклиматизация (адаптация к высоте)
Спортивная работоспособность в среднегорье и после возвращения на уровень моря
Смена поясно-климатических условий
Максимальное потребление кислорода
Глава 9. Физиологические особенности спортивной тренировки женщин
Зависимость функциональных возможностей организма от размеров тела
Силовые, скоростно-силовые и анаэробные возможности женщин
Аэробная работоспособность (выносливость) женщин
Менструальный цикл и физическая работоспособность
Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста
Индивидуальное развитие и возрастная периодизация
Возрастньш особенности физиологических функций и систем
Развитие движений и формирование двигательных (физических) качеств
Физиологическая характеристика юных спортсменов
Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом
Два основных функциональных эффекта тренировки
Пороговые тренирующие нагрузки
Специфичность тренировочных эффектов
Глава 8. Физиология плавания
Спортивная деятельность в условиях водной среды (плавание) имеет ряд физиологических особенностей, отличающих ее от физической работы в обычных условиях воздушной среды. Эти особенности определяются механическими факторами, связанными с движением в воде, горизонтальным положением тела и большой теплоемкостью воды.
Механические факторы
Скорость и энергетические расходы при плавании зависят от трех основных механических факторов: 1) величины подъемной (плавучей) сил ы, противодействующей весу тела, или обратной ей величины - потопляющей силы; 2) лобового сопротивления продвижению тела в воде и 3) движущей силы, возникающей в результате эффективных продвигающих- (пропульсивных) усилий пловца.
Подъемная (или обратная ей - потопляющая) сила, в соответствии с законом Архимеда на погруженное в воду тело действует подъемная (выталкивающая) сила, равная весу объема воды, вытесненного телом. Величина этой силы зависит, во-первых, от веса (объема) различных тканей тела (прежде всего мышц и жировой ткани) и их соотношения в теле данного человека; во-вторых, от степени погружения тела в воду, точнее, от веса (объема) частей тела, находящихся над и под поверхностью воды, и, в-третьих, от объема воздуха в легких. Вес тела в воде составляет .лишь несколько килограммов. У людей с большим количеством жира потопляющая сила (вес тела в воде) равна 0, так что они способны удерживаться на поверхности воды без каких-либо дополнительных усилий. Поскольку у женщин объем жировой ткани относительно больше, положение тела в воде у них обычно более высокое, чем у мужчин. Среди пловцов большую плавучесть имеют стайеры, тело которых занимает более горизонтальное положение (ближе к поверхности воды),так как они имеют большее жировое депо и более низкий удельный вес тела, чем спринтеры (соответственно 1,0729 и 1,0786).
|
Лобовое сопротивление. При плавании основная мышечная работа затрачивается не на удержание тела на воде, а' на преодоление силы сопротивления движению тела, которая называется лобовым сопротивлением. Ее величина зависит от вязкости воды, размеров и формы тела, а главное - от скорости продвижения его. Люди с большой поверхностью тела испытывают более значительное сопротивление воды, чем люди с меньшей поверхностью тела. Соответственно у мужчин лобовое сопротивление в среднем больше, чем у женщин. Однако при учете размеров поверхности тела это различие между женщинами и мужчинами несущественно. На величину лобового сопротивления влияет положение (форма) тела в воде при разных стилях, плавания и в различные фазы плавательного цикла.
|
Движущая, или пропульсивная (продвигающая), сила. Эта сила возникает в результате активной мышечной деятельности пловца и представляет собой сумму действия двух сил - лобового сопротивления и подъемной силы, возникающей при плавательных движениях. Она определяет скорость и направление движения тела пловца. Прямо измерить пропульсивную силу не удается, ее определяют у спортсмена, привязанного к измерительному устройству. Наибольшая движущая сила зарегистрирована при "привязанном" плавании способом брасс - около 22 кг. При других способах: плавания эта сила примерно одинакова - максимально 13-14 кг. В брассе наибольший вклад дает работа ног, а в кроле на груди и на спине - работа рук. В плавании способом баттерфляй движущая сила рук и ног примерно одинакова.
Скорость плавания. Средняя чисто дистанционная скорость (в середине бассейна) при плавании на 100 м составляет максимально: в кроле - около 1,9 м/с, в дельфине - 1,8 м/с, на спине - 1,7 м/с, в брассе - 1,5 м/с. Таким образом, наибольшая скорость достигается при плавании кролем, наименьшая - брассом.
Расходы энергии у человека при плавании примерно в 30 раз больше, чем у рыбы сходных размеров, и в 5-10 раз больше, чем при беге с той же скоростью. При очень низкой скорости плавания значительные различия в энергетических расходах у людей объясняются разной потопляющей силой (плавучестью) у них. При плавании с одинакозой скоростью женщины расходуют меньше энергии, чем мужчины, главным образом потому, что у женщин больше плавучесть.
|
Наибольшее потребление О2, которое может быть достигнуто при работе только руками или только ногами, составляет соответственно 70-80 и 80-90% от наибольшего его потребления при полноценном плавании. Максимальная скорость плавания при работе руками меньше, чем при работе руками и ногами, что соответственно ведет к более низкому потреблению О2. Однако при плавании кролем это различие крайне мало, что связано с высокой эффективностью гребков руками.
На дистанции 100 м (50-60 с) примерно 80% энергии обеспечивается анаэробным путем (околомаксимальная анаэробная мощность). С увеличением дистанции возрастает аэробный компонент энергопродукции: на дистанции 400 м он превышает 50% общей энергопродукции. На дистанциях 800 и 1500 м о^ень важную роль играют мощность и емкость кислородной системы.
Скорость, начиная с которой содержание молочной кислоты в крови быстро увеличивается (анаэробный лактацидемический порог), соответствует примерно 80% от МПК. Тренированные пловцы способны работать на относительно высоком уровне потребления О2 (60-70% от МПК) без повышения содержания лактата в крови. При максимальной скорости плавания анаэробный гликолиз обеспечивает 50-60% энергии. Максимальная концентрация лактата в крови у высококвалифицированных спортсменов достигает 18 ммоль/л.
Эффективность плавания. Эффективность работы определяется как выраженное в процентах отношение полезной работы к расходуемой для ее выполнения энергии. Эффективность плавания крайне низкая. Даже у высококвалифицированных пловцов она составляет 4-7%. (Для сравнения: механическая эффективность наземной работы - ходьбы, бега, работы на велоэргометре - 20-30%. Отметим, однако, что при работе на ручном эргометре на "суше" эффективность также низкая - примерно 10%). Наибольшая эффективность отмечается при плавании кролем - 6-7% (максимум до 15%), наименьшая - брассом (4-6%).
|
Исключительно большие различия в потреблении О2 не только между нетренированными и тренированными людьми, но даже между высокотренированными пловцами указывают прежде всего на сложность плавательной техники. Кроме того, большое значение, как уже отмечалось, имеют размеры и форма тела (определяющие лобовое сойротивление), положение тела в воде, размеры и подвижность "весел", создающих движущую силу.
В определенных пределах с увеличением скорости плавания, вплоть до оптимальной, эффективность нарастает. При дальнейшем
увеличении скорости она падает. Оптимальная скорость зависит от способа плавания и техничности пловца. В диапазоне относительно небольших скоростей (0,4- 1,2 м/с) для данного человека энергетическая стоимость проплывания (кролем) 1 км постоянна, т. е. не зависит от скорости плавания. Пловцы с плохой техникой расходуют больше энергии на единицу дистанции при любой скорости.
Удельный вес девочек и мальчиков вплоть до периода полового созревания заметно не различается. Соответственно и энергетическая стоимость плавания (со скоростью 0,7 м/с) на единицу дистанции с учетом размеров тела у них одинакова. Примерно с 15 лет этот показатель значительно снижается у девушек и повышается у.юношей. На сверхдлинных дистанциях оптимальное соотношение между лобовым сопротивлением и механической эффективностью у женщин более чем компенсирует их сравнительно низкое МПК- Это объясняет определенное преимущество женщин перед мужчинами в плавании на сверхдлинные дистанции. Энергетическая стоимость проплывания 1 км дистанции составляет у нетренированных женщин 250 - 300 ккал, у нетренированных мужчин - 400 - 500 ккал, у спортсменок - 75- 150 ккал, у спортсменов- 150 - 200 ккал.
Максимальное потребление кислорода
У нетренированных (в плавании) людей МПК при плавании в среднем на 15-20% ниже, чем в наземных условиях (например, .при беге на тредбане). Чем выше тренированность пловца, тем ближе его "плавательное" МПК (определяемое при плавании) к абсолютному ("наземному"). У высокотренированных пловцов "плавательное" МПК в среднем примерно лишь на 6-8% ниже абсолютного, выявленного во время бега в "гору" на тредбане, и примерно равно МПК при работе на велоэргометре. У выдающихся пловцов МПК при плавании такое же, как и при беге, или даже немного выше.
Эти данные говорят о высокой специфичности плавательной тренировки, что связано с такими уникальными особенностями плавания, как горизонтальное положение тела в воде (в отличие от обычного вертикального положения при работе в наземных условиях), активация меньшей мышечной массы к преимущественная работа мышц рук и пояса верхних конечностей (в отличие от преобладающей работы мышц ног и туловища при наземных локомоциях).
Следовательно, МПК,. измеряемое в наземных условиях, не может быть полноценно использовано для оценки аэробной работоспособности пловца, а его тренировка, направленная на увеличение максимальной аэробной мощности, должна быть в основном плавательной.
Во время плавания различными способами МПК достигается при неодинаковых скоростях: в брассе - при меньшей скорости, чем в других способах. При одинаковом способе плавания менее тренированные спортсмены достигают своего уровня МПК при более низких скоростях, чем более тренированные пловцы.
Выдающиеся пловцы, особенно стайеры, отличаются высоким МПК - в среднем 5,2 л/мин (4-6 л/мин) при плавании и 5,4 л/мин (4,7-6,4 л/мин) при беге на тредбане, т. е. разница составляет в среднем 5,6%. Соответствующие показатели у женщин - 3,4 л/мин (2,9-3,7 л/мин) и 3,6 л/мин (3,4-4 л/мин). Относительное "беговое" МПК (на 1 кг веса тела) у мужчин составляет в среднем 68,6 мл/кг-мин (62,5-76,4), у женщин - 55,3 мл/кг-мин (47,8-61,2), что ниже, чем у представителей "земных" видов спорта, требующих проявления выносливости.
Пловцы обычно весят больше, чем бегуны-стайеры. Поэтому относительное МПК у пловцов меньше, чем у хороших стайеров. Во время плавания вес тела слишком мал и в отличие от "наземных" локомоций не играет практически никакой роли как фактор нагрузки. Расход энергии при плавании не пропорционален весу тела, как при беге. Поэтому максимальные аэробные возможности у пловцов лучше оценивать по абсолютному МПК (л/мин).
Кислород транспортная система
Большинство физиологических особенностей при плавании обусловлено реакцией организма на пребывание в воде (водную иммерсию), горизонтальное положение тела, давление окружающей среды на тело и преимущественную работу верхними конечностями.
|
Давление воды и ее выталкивающая сила обусловливают определенные приспособительные особенности дыхания. Статические размеры легких при погружении тела в воду (без опускания головы) несколько уменьшаются. ЖЕЛ в воде снижается примерно на 8-10%. Частично (около 3%) это связано с увеличением объема крови в грудной клетке (т. е. центрального объема крови) и в некоторой мере (5-7%) с напряжением дыхательной мускулатуры, противодействующей гидростатическому давлению воды. При плавании ЖЕЛ уменьшается также за счет горизонтального положения тела. Функциональная остаточная емкость становится лишь на 0,5-1,1 л больше остаточного объема.
В отличие от дыхания в воздушной среде в воде дыхательный объем увеличивается исключительно за счет использования резервного объема вдоха - РОВд (рис. 81). Резервный объем выдоха (РОВыд) уменьшается до 1 л (в условиях воздушной среды до 2,5 л). Уровень спокойного дыхания смещается в сторону остаточного объема, уменьшая функциональную остаточную емкость. В результате во время дыхания в воде состав альвеолярного воздуха изменяется очень значительно при каждом дыхательном цикле. Альвеолярная вентиляция при максимальном аэробном плавании (потребление О2 на уровне МПК) выше, чем при максимальной аэробной работе на суше.