ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 13.12.2020

Просмотров: 1054

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Частноутвердительным суждениям соответствуют две круговые схемы (рис. 5). Чаще всего S и P яв-ляются перекрещивающимися понятиями, поэтому круги, отображающие объемы субъекта и преди-ката пересекаются. Так, круг лиц, называемых студентами, лишь частично накладывается на круг лиц, которые изучают китайский язык; и в первой и второй категории людей есть такие, кто принад-лежит только к одной из них и не принадлежит к другой. Учебники же и задачники находятся в от-ношении подчинения (хотя лишь некоторые учебники - задачники, но все задачники являются учеб-никами, поэтому круг для P полностью входит в круг для S).

Используя круговые схемы, надо помнить, что, строго говоря, содержание понятий задается только определением, а оно чаще всего лишь подразумевается и иногда может быть истолковано неодина-ково. Так, в суждении о преступниках под избегающими наказания можно иметь в виду вообще всех, кто сумел уйти от него: нерадивых работников, проштрафившихся учеников и т.п. Тогда между S и P отношение перекрещивания. Но если сюда относить только преступников, которым удалось избег-нуть кары, то тогда те же понятия окажутся в отношении подчинения.

Частноотрицательное суждение, как легко понять по аналогии с предыдущими, является частным по количеству и отрицательным по качеству. Для обозначения берется вторая гласная из слова nego - O (o). Тогда структура суждения - S o P; читается: некоторые S не есть P. 1) "Некоторые законы не имеют обратной силы", 2) "Большинство музыкантов не скрипачи", 3) "Иные из бабочек не являются однодневками", 4) "По меньшей мере, часть грибов не относят к высшим растениям".


Соотношение по объему может изображаться тремя вариантами, показанными на рисунке 6. Закон, с одной стороны, и все то, что можно назвать имеющим обратную силу, с другой стороны (о которых идет речь в первом суждении), образуют, очевидно, отношение пересечения. Легко также понять, что в суждении (2) понятия "музыкант" и "скрипач" образуют отношение подчинения. В суждении (3), однако, такой однозначности уже нет. Если под "однодневками" иметь в виду только однодневных бабочек, то тогда между понятиями, стоящими на месте субъекта и предиката, отношение подчине-ния. Но, строго говоря, под "однодневным" можно понимать и все, что длится не более одного дня, - от грозы до курса ценных бумаг; в таком случае те же понятия образуют отношение пересечения. В суждении (4) речь идет о несовместимых понятиях, поскольку все грибы - низшие растения (поэтому не только некоторые из них, но и все они не относятся к высшим). Тем не менее, данное суждение является истинным, так как в нем дается осторожное ручательство всего лишь за часть грибов. На-помним еще раз, что в традиционной логике квантор "некоторые" имеет (когда не сделано специаль-ных оговорок) именно такой смысл - "некоторые, но, может быть, и все".


Следует твердо помнить, что, определяя вид суждения по объединенной классификации, мы должны принимать во внимание только то, что в нем говорится, а не отображаемую в нем действительность. Между ними может не быть совпадения, поскольку встречаются высказывания также и ложные. На-пример, суждение "Утка - домашняя птица" является, очевидно, общеутвердительным и ему соответ-ствует круговая схема рис. 3 (все утки входят в круг домашних птиц). В действительности же их сле-дует изображать, как легко понять, пересекающимися, ведь некоторые из уток являются дикими и, следовательно, не входят в число домашних птиц. Тем не менее, в дальнейшем анализе данное суж-дение все равно должно остаться для нас общеутвердительным по своим логическим свойствам и его надо будет изображать кругами для подчиненных понятий, но только при этом придется помнить, что мысль, содержащаяся в этом суждении, является ложной.

§14. Распределенность терминов в суждении

Свойства суждений определяются еще одним важным показателем - распределенностью их терми-нов, который играет большую роль в правилах умозаключений. Оно отображает полноту выражен-ных в суждении знаний о тех предметах, явлениях, свойствах, которые входят в объемы понятий субъекта и предиката, то есть об упоминаемых в суждении вещах и их свойствах. Одни из них харак-теризуются прямо, другие же лишь косвенно. Например, суждение "Передвижники являлись русски-ми художниками", с одной стороны, дает сведения непосредственно о членах Товарищества пере-движных художественных выставок (все они русские художники), с другой стороны, окольным пу-тем характеризует и русских художников того времени (часть из них была передвижниками). Точно также и суждение, допустим, "Невменяемые не привлекаются к ответственности" дает информацию как о невменяемых, о так и привлекаемых к ответственности: все невменяемые не принадлежат к числу тех, кого привлекают к ответственности, и все привлекаемые к ответственности не являются невменяемыми.

Оба термина суждения характеризуются, следовательно, и в качестве свойства предмета, и в качестве самого предмета. Но надо помнить, что характеристика такого рода зависит от многих обстоятельств и может не в одинаковой мере затрагивать оба термина.

Градаций распределенности всего две: либо мы получаем сведения обо всем объеме, либо только о части; это соответствует и делению суждений по количеству на общие и частные.

Термин суждения является распределенным, если он взят в нем во всем объеме, то есть из суждения видно, что все предметы его объема обладают (не обладают) каким-то свойством.

Термин суждения является нераспределенным, если он берется не во всем объеме - лишь часть пред-метов его объема обладает (не обладает) каким-то свойством.

Для распределенности имеет значение только полнота знаний об объеме. Характеризуется ли термин в утвердительной форме (ему приписывается свойство) или в отрицательной (отрицается таковое у него), не играет роли. Когда про объем понятия известно, что все его предметы не обладают таким-то свойством, то он все равно является так же распределенным, как если бы было известно, что все они обладают им. Правда, для одного и того же суждения распределенность должна иметь один и тот же смысл: характеризуется один из терминов как распределенный в качестве обладающего тем или иным свойством, тогда и другой термин тоже должен оцениваться на распределенность по признаку именно обладания свойством.


Нам осталось только рассмотреть все виды суждений и отметить распределенность терминов в каж-дом из них. Для этого полезно будет обращаться к рисункам 3-6, на которых воспроизводятся объем-ные соотношения между понятиями, играющими роль терминов в суждении.

В общеутвердительном суждении субъект всегда распределен. На это указывает квантор. Обычно стоящее на месте предиката понятие шире по объему, чем то, которое стоит на месте субъекта (рис. 3), как, например, в суждении "Каждый поэт - литератор". Предикат же, как правило, не распределен. В данном случае это видно из того, что не все литераторы поэты. Но могут быть и исключения, когда субъект (S) и предикат (P) образуют равнозначные понятия и тогда оба термина - и S, и P - распреде-лены. Таковы суждения "Правительство - кабинет министров" и "Клептомания - болезненно навязчи-вое стремление к воровству". Поскольку понятия в них равнозначны, то значит, всякий кабинет ми-нистров является правительством и всякое болезненно навязчивое стремление к воровству есть клеп-томания. Правда, для логики, которая создает правила оперирования понятиями на основе только формы высказываний (не обращаясь к содержанию), такие исключения не имеют принципиального значения. Потому что их можно учесть лишь при знании материала, затронутого в данном суждении. Сама же форма общеутвердительного суждения твердо гарантирует только то, что часть предметов, о которых говорится в предикате, обязательно обладает свойством S. Мы будем считать, поэтому субъект общеутвердительного суждения всегда распределенным, а предикат нераспределенным.

В общеотрицательном суждении оба термина всегда распределены. Раз в нем прямо отрицается при-надлежность всех предметов одного класса к предметам другого, то тем самым отрицается и принад-лежность всех предметов второго к первому (рис. 4). Из-за того, что никакой кит не является рыбой, мы легко придем к выводу, что никакая рыба не является китом. Значит, в общеотрицательных суж-дениях оба термина характеризуются в полном объеме как не принадлежащие к какому-то классу предметов.

Частноутвердительное суждение всегда имеет нераспределенный субъект; на это указывает квантор "некоторые". Предикат тоже чаще всего не является распределенным, как в суждении "Некоторые музыканты - филателисты"; эти два понятия относятся к числу пересекающихся, поэтому часть лю-дей одной категории обладает свойством другой, а часть нет (рис. 5). Но здесь тоже бывают исклю-чения. Они относятся к тем случаям, когда между S и P отношения подчинения и S подчиняет себе P. Так, в суждении "Некоторые музыканты скрипачи" понятие скрипачей полностью входит в понятие музыкантов. Следовательно, термин, стоящий на месте предиката в таком суждении оказывается распределенным. Тем не менее, для полной достоверности выводов с такими суждениями надо пола-гаться на самый худший вариант: всегда и во всех случаях лишь часть предметов из объема P обла-дает свойством (или входит в объем) S. Таким образом, субъект и предикат частноутвердительного суждения всегда выступают нераспределенными.


У частноотрицательного суждения субъект тоже всегда не распределен по тем же причинам, что и в суждении частноутвердительном: часть предметов из объема S обязательно не обладает свойством, составляющим содержание P. С предикатом дело, однако, обстоит сложнее для понимания, так как этой категории суждений соответствует целых три разных варианта соотношений по объему между S и P (рис. 6). Поэтому понятие-предикат характеризуется очень различно с точки зрения необладания свойством, и спектр различия колеблется в крайних пределах: ни один не обладает свойством - все обладают им. Например, суждение "Некоторые альпинисты не являются горноспасателями" будет истинным как в том случае, если круг лиц, обозначаемых понятием "альпинист", совершенно не со-прикасается с кругом "горноспасателей", так и при условии, что часть лиц входит и туда, и сюда, и даже если весь объем "горноспасателей" входит в объем "альпинистов"; ложным это суждение было бы только в одном случае: все альпинисты - горноспасатели.

Однако в теории умозаключений, где, прежде всего, используется распределенность терминов, как и в предыдущих видах суждений, оказывается достаточно учесть один предельный случай - все пред-меты из объема P не обладают свойством, о котором говорится в S. Если же окажется, что только часть предметов, охваченных понятием-предикатом, не обладает соответствующим свойством, то все правила умозаключений относительно распределенности сохраняют силу и тут тоже. Мы поэтому не придем к ошибочным выводам, если всегда будем считать распределенным понятие, образующее предикат частноотрицательного суждения, а субъект нераспределенным.

Итак, субъект всегда распределен в общих суждениях и не распределен в частных. Предикат всегда распределен в отрицательных суждениях и не распределен в утвердительных.

§15. Логический квадрат

Благодаря количественным и качественным характеристикам даже суждения с одними и теми же субъектами и предикатами могут различаться между собой. Их называют суждениями с одинаковой материей, потому что в них речь идет об одних и тех же предметах и об тех же самых их свойствах, только в утвердительных суждениях эти свойства приписываются, а в отрицательных - отрицаются, в частных говорится о некоторых из предметов, в то время как в общих речь идет обо всех. Между су-ждениями этого рода устанавливаются определенные твердые соотношения по их истинностным значениям. Так, если мы возьмем общеотрицательное суждение "Ни один из киосков в этом квартале не торгует цветами" и если оно истинно, то тогда ни в коем случае не может быть истинным частно-утвердительное суждение о том же - "Некоторые из киосков в этом квартале торгуют цветами". Точ-но так же, если бы второе было истинным, то в таком случае обязательно ложным было бы первое. Отношения между другими парами суждений с тем же субъектом и таким же предикатом выглядят иначе, но главное, что они существуют и их можно выявить.


Всю систему взаимообусловленности истинностных значений суждений с одинаковой материей удобно изобразить графически с помощью так называемого логического квадрата.

Буквы на его углах символизируют различные виды суждений - A, E, I, O (см. рис. 7). А его стороны и диагонали выражают всю совокупность возможных отношений между ними. Линия AE образует отношение противоположности или, иначе, контрарности. Пары этих суждений никогда не могут быть одновременно истинными; в нашем примере истинность того и другого означала бы, что верно как утверждение о том, что все киоски в этом квартале торгуют цветами, так и о том, что ни один из них ими не торгует. Очевидно, такое невозможно. Другие же сочетания значений для пары S a P и S e P допустимы: могут быть оба ложны, и может одно быть истинным, а другое ложным. Отсюда по-лучается правило: когда одно из противоположных суждений (S a P или S e P) истинно, то можно уверенно делать вывод, что противоположное ему истинным не является, когда же одно ложно, то никаких выводов о противоположном делать нельзя, оно может быть и тем, и другим.

Две расположенные по диагонали пары AO и EI составляют отношение противоречия или контра-дикторности. Их истинностные соотношения легче всего запомнить: они не бывают ни одновремен-но истинными, ни одновременно ложными. Следовательно, их истинностные значения регулируются законом исключенного третьего: когда одно истинно, другое обязательно ложно и наоборот. Это значит, установив истинностное значение одного из членов пары, каким бы оно ни было, мы тем са-мым однозначно установили значение лежащего против него по диагонали.

Нижняя сторона квадрата IO выражает отношение частичной совместимости, или, иначе, субкон-трарности. В отличие от противоположных суждений эта пара никогда не бывает одновременно ложной. В принципе можно рассматривать данное обстоятельство как следствие, обусловленное пер-выми двумя отношениями. В самом деле, попробуем воспользоваться теми соображениями, которые были высказаны о противоположных и противоречащих суждениях, предположив сначала, что S i P ложно, и определив значение S o P в таком случае, затем проделаем то же самое, отправляясь от того, что ложно S o P. Итак, допустим, что S i P ложно. Тогда противоречащее ему суждение S e P истинно (ибо лежащие по диагонали пары не могут быть вместе ни истинными, ни ложными); отсюда следу-ет, что противоположное S e P суждение S a P должно быть ложным (так как из противоположных пар суждений истинным может быть только одно); но, установив ложность S a P, мы обязаны при-знать истинным противоречащее ему суждение S o P. Совершенно аналогично, допустив ложность S o P, мы обратным порядком придем к утверждению, что S i P в таком случае должно быть истинно. Однако при других истинностных значениях их взаимообусловленность отсутствует. Предположив, что S i P (S o P) истинно, мы сможем, правда, прийти к выводу о ложности противоречащего ему су-ждения S e P (S a P), но дальше рассуждение оборвется, так как при ложности одного из противопо-ложных понятий другое может иметь любое из двух возможных значений, а значит и лежащее про-тив него по диагонали противоречащее (и одновременно субконтрарное относительно S i P) сужде-ние S o P может быть как истинным, так и ложным. Таким образом, получается правило в отношении субконтрарных суждений: когда одно из них ложно, другое обязательно истинно, но когда одно из них истинно, то о другом ничего сказать нельзя.