Файл: Задача 1 Методом изоклин построить интегральные кривые уравнения Решение.docx
Добавлен: 25.10.2023
Просмотров: 36
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Автономная некоммерческая организация высшего образования «МОСКОВСКИЙ МЕЖДУНАРОДНЫЙ УНИВЕРСИТЕТ» |
Кафедра экономики и управления Форма обучения: заочная |
ВЫПОЛНЕНИЕ
ПРАКТИЧЕСКИХ ЗАДАНИЙ
ПО ДИСЦИПЛИНЕ
Математика
Группа 22М511в
Студент
Д. М. Гиниатов
МОСКВА 2023
Практические задания
Задача 1
Методом изоклин построить интегральные кривые уравнения
1.1.
Решение
Если принять , то уравнение изоклины для заданного уравнения: или – уравнение гипербол. Для примера ограничимся значениями: , и .
Построим интегральные кривые, пересекающие каждую из гипербол-изоклин под определённым углом: первую под углом, определяемым угловым коэффициентом , вторую под углом, определяемым угловым коэффициентом и третью под углом, определяемым угловым коэффициентом .
Задача 2
Решить уравнение, допускающее понижения порядка
2.1.
Решение
Замена: , тогда , где - некоторая функция от .
.
Найдем :
,
- некоторые постоянные.
Задача 3
Решить систему уравнений
3.1.
Решение
Имеем , складываем оба уравнения: .
или .
Следовательно, . Делаем подстановку в первое уравнение системы.
или .
Найдем : .
В итоге: , - некоторые постоянные.
Ответ: .
Задача 4
Вероятность появления события в каждом испытании равна 0,7. Сколько нужно провести испытаний, чтобы наивероятнейшее число появлений события равнялось 10?
Решение
Наивероятнейшее число k0 определяют из двойного неравенства , причем:
1) если число np – q дробное, то существует одно наивероятнейшее число k0;
2) если число np – q целое, то существует два наивероятнейших числа, а именно: k0 и k0 + 1;
3) если число np целое, то наивероятнейшее число k0 = np.
пусть провели испытаний.
Имеем:
.
Ответ: .