Файл: Реферат дисциплина Оценка качества информационных систем Тема Показатели качества информационной системы студент группы ин518(2) Ф. И. О. Постнов А. В. Город Омск.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 26.10.2023

Просмотров: 484

Скачиваний: 12

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Содержание

Введение

1.1 Показатели качества ИС

1.2 Основные показатели надежности Показатель надежности - это количественная характеристика одного или нескольких свойств, определяющих надежность системы. В основе большинства показателей надежности лежат оценки наработки системы, то есть продолжительности или объема работы, выполненной системой. Показатель надежности, относящийся к одному из свойств надежности, называется единичным. Комплексный показатель надежности характеризует несколько свойств, определяющих надежность системы.Ниже приводятся наименования основных показателей надежности систем и их определения в соответствии с ГОСТ 27.002-80 «Надежность в технике. Термины и определения».К единичным показателям надежности в соответствии с ГОСТ 27.002-80 относятся показатели безотказности, показатели ремонтопригодности и показатели долговечности.Показатели безотказности:1. Вероятность безотказной работы - вероятность того, что в пределах заданной наработки отказ системы не возникнет.2. Вероятность отказа - обратная величина, вероятность того, что в пределах заданной наработки отказ системы возникнет.3. Средняя наработка до отказа - математическое ожидание наработки системы до первого отказа (существенно для невосстанавливаемых систем).4. Средняя наработка на отказ (Го, MTBF - Main Time Between Failures) - отношение наработки восстанавливаемой системы к математическому ожиданию числа ее отказов в пределах этой наработки (имеет смысл только для восстанавливаемых систем).5. Интенсивность отказов - условная плотность вероятности возникновения отказа невосстанавливаемой системы, определяемая для рассматриваемого момента времени при условии, что до этого момента отказ не возник.6. Параметр потока отказов (k(t)) - отношение среднего числа отказов для восстанавливаемой системы за произвольно малую ее наработку к значению этой наработки.Показатели ремонтопригодности:1. Вероятность восстановления работоспособного состояния - вероятность того, что время восстановления работоспособного состояния не превысит заданного.2. Среднее время восстановления работоспособного состояния, Тв - математическое ожидание времени восстановления работоспособного состояния системы.Показатели долговечности:1. Средний ресурс - математическое ожидание наработки системы от начала ее эксплуатации или ее возобновления после ремонта до перехода в предельное состояние.2. Срок службы (Тсс) - календарная продолжительность от начала эксплуатации системы или ее возобновления после ремонта до перехода в предельное состояние.Комплексные показатели надежности:1. Коэффициент готовности (Кг) - вероятность того, что система окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение системы по назначению не предусматривается 2. Коэффициент оперативной готовности - вероятность того, что система окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение системы по назначению не предусматривается, и начиная с этого момента будет работать безотказно в течение заданного времени.3. Коэффициент технического использования - отношение математического ожидания интервалов времени пребывания системы в работоспособном состоянии за некоторый период эксплуатации к сумме математических ожиданий интервалов времени пребывания системы в работоспособном состоянии, простоев, обусловленных техническим обслуживанием, и ремонтов за тот же период эксплуатации где Тп - время простоя системы, обусловленное выполнением планового технического обслуживания и ремонта (время профилактики), пересчитанное на один отказ.4. Коэффициент сохранения эффективности - отношение значения показателя эффективности за определенную продолжительность эксплуатации к номинальному значению этого показателя, вычисленному при условии, что отказы в системе в течение того же периода эксплуатации не возникают.Коэффициент сохранения эффективности характеризует степень влияния отказов в системе на эффективность ее применения по назначению. Из ранее приведенного определения теории надежности следует, что коэффициент сохранения эффективности может служить интегральным критерием оптимизации надежности системы. Действительно, критерий оптимизации - это показатель, для которого указана желаемая его величина или желаемое направление его изменения. Направление изменения коэффициента сохранения правильно выбранного показателя эффективности определяет основные ориентиры в поиске свойств системы, которые обеспечивают ее оптимальную надежность.Для пользователей сложных информационных систем понятие их надежности ощущается в наибольшей степени по коэффициенту готовности системы КГ, то есть по отношению времени работоспособного состояния системы к времени ее незапланированного простоя. Для типичного современного сервера Кг = 0,99, что означает примерно 3,5 суток простоя в год.

1.3 Более простые показатели надежности Безотказность - свойство системы сохранять работоспособное состояние в течение некоторого времени или наработки (наработка - продолжительность или объем работы системы).Ремонтопригодность - свойство системы, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения отказов, повреждений и поддержанию и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонтов.Долговечность - свойство системы сохранять при установленной системе технического обслуживания и ремонта работоспособное состояние до наступления предельного состояния, то есть такого момента, когда дальнейшее использование системы по назначению недопустимо или нецелесообразно.Одним из основных понятий теории надежности является отказ. Отказом называют полную или частичную потерю работоспособности системы или ее элемента. Отказы бывают: внезапные и постепенные, зависимые и независимые, полные и частичные, устойчивые и самоустраняющиеся, аппаратные, эргатические и программные и т. п.Устойчивый отказ обусловливает длительную неработоспособность системы и устраняется только в результате ее технического обслуживания, то есть выполнения специальных мер, принятых для восстановления работоспособности системы. Самоустраняющийся отказ (обычно его называют сбоем) - отказ, имеющий кратковременный характер и самоустраняющийся произвольно, без принятия специальных мер для его устранения. Ряд сбоев одного и того же характера, следующих друг за другом, называют перемежающимся отказом.Аппаратный отказ обусловлен нарушением работоспособности технического элемента системы, соответственно, эргатический - эргатического и программный - программного элементов системы. В соответствии с приведенной классификацией отказов можно рассматривать и надежность трех видов: аппаратную; эргатическую; программную. В многофункциональных системах часто вводят понятие функциональной надежности выполнения локальной функции системы. Это понятие важно тогда, когда разные функции системы различны по значимости, обеспечиваются различными подсистемами и дифференцируются по предъявляемым к ним требованиям.Все системы в теории надежности классифицируются по ряду признаков. Важными классификационными группами являются: восстанавливаемые; невосстанавливаемые; обслуживаемые; необслуживаемые системы. Восстанавливаемой называется такая системы, работоспособность которой в случае возникновения отказа подлежит восстановлению. Невосстанавливаемая система - такая система, работоспособность которой в случае отказа восстановлению не подлежит.Обслуживаемая система - система, для которой предусматривается проведение регулярного технического обслуживания. Необслуживаемая система - система, для которой не предусматривается проведение регулярного технического обслуживания.Информационные и вычислительные системы первых поколений, за редким исключением, относятся к восстанавливаемым обслуживаемым системам. Многие современные вычислительные системы относятся к необслуживаемым восстанавливаемым системам (например персональные компьютеры) и даже к необслуживаемым и невосстанавливаемым системам (отдельные узлы вычислительных систем, например микропроцессор). 1.4 Достоверность информационных систем В силу специфики информационных систем, которые априори предназначены для преобразования информации, важнейшим их свойством является достоверность функционирования.Достоверность функционирования - это свойство системы, обуславливающее безошибочность производимых ею преобразований информации.Достоверность функционирования ИС полностью определяется и измеряется достоверностью ее результирующей информации. Для ИС достоверность функционирования является не просто одним из свойств их надежности, но приобретает и самостоятельное значение, поскольку именно достоверность конечной информации обусловливает требования к надежности системы.Как уже указывалось, надежность ИС - не самоцель, а лишь средство обеспечения оптимальной достоверности ее выходной информации, обуславливающей наивысшую эффективность функционирования системы.Достоверность информации - это свойство информации отражать реально существующие объекты с необходимой точностью. Достоверность (D) информации измеряется доверительной вероятностью необходимой точности, то есть вероятностью того, что отражаемое информацией значение параметра отличается от истинного значения этого параметра в пределах необходимой точности:D=P{ }где - реальная точность отображения параметра, [ ] - диапазон необходимой точности отображения параметра.Для более полного понимания вышеприведенного определения следует пояснить некоторые присутствующие в нем понятия.Истинная информация - информация, объективно, точно и правильно отражающая характеристики и признаки какого-либо объекта или явления (адекватная заданному параметру объекта).Точность информации - это характеристика, показывающая степень близости отображаемого значения параметра и истинного его значения. Необходимая точность определяется функциональным назначением информации и должна обеспечивать правильность принятия управленческих решений.Таким образом, при оценке истинности информации существуют две основные вероятностные задачи: определение точности информации или расчет математического ожидания абсолютной величины отклонения значения показателя от объективно существующего истинного значения отображаемого им параметра; определение достоверности информации или вычисление вероятности того, что погрешность показателя не выйдет за пределы допустимых значений. Адекватность отражения включает в себя понятия и точности, и достоверности, которые не должны смешиваться (что иногда имеет место в определениях достоверности информации, приводимых в ряде книг).Из сказанного следует, что нарушение надежности ИС, приводящее к ухудшению точности результирующей информации в пределах необходимой точности, не снижает эффективности функционирования системы (коэффициента сохранения эффективности). И если отсутствие информации в положенное время (ее несвоевременность) трактовать в обобщенном виде как наличие недостоверной информации, то единственным показателем качества информации, зависящим от надежности ИС и влияющим на эффективность ее функционирования, является достоверность.Достоверность информации может рассматриваться с разных точек зрения. Поэтому для достоверности правомерно и целесообразно использовать систему показателей.Единичные показатели достоверности информации:1. Доверительная вероятность необходимой точности (достоверность) - D = 1 - Рош - вероятность того, что в пределах заданной наработки (информационной совокупности - массива, показателя, реквизита, кодового слова, символа или иного информационного компонента) отсутствуют грубые по- . грешности, приводящие к нарушению необходимой точности.2. Средняя наработка информации на ошибку - Q = 1/Р. Отношение объема информации, преобразуемой в системе, к математическому ожиданию количества ошибок, возникающих в информации.3. Вероятность ошибки (параметр потока ошибок) - Рош - вероятность появления ошибки в очередной информационной совокупности.Показатели корректируемости информационных систем1. Вероятность коррекции в заданное время - Pкорр(т) - вероятность того, что время, затрачиваемое на идентификацию и исправление ошибки, не превысит заданного т.2. Среднее время коррекции информации - Ти - математическое ожидание времени, затрачиваемого на идентификацию и исправление ошибки.Комплексные показатели достоверности1. Коэффициент информационной готовности - это вероятность того, что информационная система окажется способной к преобразованию информации в произвольный момент времени того периода (7^,), который планировался для этого преобразования, то есть выполнения условия, что в данный момент времени система не будет находиться в состоянии внепланового обслуживания, вызванного устранением отказа или идентификацией и исправлением ошибки.2. Коэффициент информационного технического использования - это отношение математического ожидания планируемого времени работы системы на преобразование информации, за вычетом времени восстановления Тв контроля - Тк, идентификации и исправления ошибок - Ти, к сумме планируемого времени работы системы и профилактического обслуживания Тпф.Наряду с понятием достоверности информации существует понятие достоверности данных, рассматриваемое в синтаксическом аспекте. Под достоверностью данных понимается их безошибочность. Она измеряется вероятностью отсутствия ошибок в данных (в отличие от достоверности информации, к снижению достоверности данных приводят любые погрешности, а не только грубые). Недостоверность данных может не повлиять на объем данных, но может и уменьшить и увеличить его, в отличие от недостоверности информации, всегда уменьшающей ее количество. Наконец, недостоверность данных может не нарушить достоверность информации (например, при наличии в последней необходимой избыточности).Одним из наиболее действенных средств обеспечения достоверности информации в ИС является ее контроль. Контроль - процесс получения и обработки информации с целью оценки соответствия фактического состояния объекта предъявляемым к нему требованиям и выработки соответствующего управляющего решения. Объектом контроля в нашем случае является достоверность информации, следовательно, при контроле должно быть выявлено соответствие фактической и необходимой точности представления информации или, с учетом рассмотренной ранее нормы этого соответствия, выявлено наличие или отсутствие ошибок в контролируемой информации. При обнаружении ошибки должны быть приняты меры для ее устранения или, по крайней мере, выработаны соответствующие рекомендации по локализации и идентификации обнаруженной ошибки и уменьшению последствий ее влияния на функционирование ИС; исправление ошибок в последнем случае выполняется путем выполнения некоторых внешних относительно процедуры контроля операций.Методы контроля достоверности информации, применяемые в ИС, весьма разнообразны. Классификация методов контроля может быть выполнена по большому числу признаков, в частности: по назначению, по уровню исследования информации, по способу реализации, по степени выявления и коррекции ошибок. Классификация методов контроля достоверности по назначению. По назначению следует различать профилактический, рабочий и генезисный контроль.Профилактический контроль и, например, одна из наиболее распространенных его форм - тестовый контроль, предназначены для выявления состояния системы в целом и отдельных ее звеньев до включения системы в рабочий режим. Целью профилактического контроля, осуществляемого часто в утяжеленном режиме работы системы, является выявление и прогнозирование неисправностей в ее работе с последующим их устранением.Рабочий контроль, или контроль в рабочем режиме, производится в процессе выполнения системой возложенных на нее функций. Он, в свою очередь, может быть разделен на функциональный контроль и контроль качества продукции. Функциональный контроль может преследовать цель либо только проверки работоспособности (отсутствия неисправностей) системы, либо, кроме того, установления места и причины неисправности (диагностический контроль). Контроль качества продукции в нашем случае как раз и является контролем достоверности информации как одним из важнейших показателей качества продукции выпускаемой ИС.Генезисный контроль проводится для выяснения технического состояния системы в прошлые моменты времени с целью определения причин сбоев и отказов системы, имевших место ранее, сбора статистических данных об ошибках, их характере, величине и последствиях (экономических потерях) этих ошибок для ИС.По уровню исследования информации контроль может быть синтаксический, семантический и прагматический.Синтаксический контроль - это, по существу, контроль достоверности данных, не затрагивающий содержательного, смыслового аспекта информации. Предметом синтаксического контроля являются отдельные символы, реквизиты, показатели: допустимость их наличия, допустимость их кодовой структуры, взаимных сочетаний и порядка следования.Семантический контроль оценивает смысловое содержание информации, ее логичность, непротиворечивость, согласованность, диапазон возможных значений параметров, отражаемых информацией, динамику их изменения.Прагматический контроль определяет потребительную стоимость (полезность, ценность) информации для управления, своевременность и актуальность информации, ее полноту и доступность.По способу реализации контроль может быть организационным, программным, аппаратным и комбинированным.Организационный контроль достоверности является одним из основных в ИС. Он представляет собой комплекс мероприятий, предназначенных для выявления ошибок на всех этапах участия эргатического звена в работе системы, причем обязательным элементом этих мероприятий является человек или коллектив людей.Программный контроль основан на использовании специальных программ и логических методов проверки достоверности информации или правильности работы отдельных компонентов системы и всей системы в целом. Программный контроль, в свою очередь, подразделяется на программно-логический, алгоритмический и тестовый.Программно-логический контроль базируется на использовании синтаксической или семантической избыточности; алгоритмический контроль использует как основу вспомогательный усеченный алгоритм преобразования информации, логически связанный с основным рабочим алгоритмом (тестовый контроль был рассмотрен чуть выше).Аппаратный контроль реализуется посредством специально встроенных в систему дополнительных технических схем. Этот вид контроля также подразделяется на непрерывный и оперативный (аппаратно-логический) контроль достоверности, а также непрерывный контроль работоспособности.Непрерывный контроль достоверности функционирует непрерывно в процессе работы системы параллельно с процедурами основного технологического процесса преобразования информации. Во время оперативного (аппаратно-логическо-го) контроля достоверности выполнение основных технологических операций над информацией приостанавливается. Непрерывный контроль работоспособности - это уже не контроль достоверности информации, а контроль значений параметров компонентов системы с помощью встроенных в них датчиков.По степени выявления и коррекции ошибок контроль делится на: обнаруживающий, фиксирующий только сам факт наличия или отсутствия ошибки; локализующий, позволяющий определить как факт наличия, так и место ошибки (например символ, реквизит и т. д.); исправляющий, выполняющий функции и обнаружения, и локализации, и исправления ошибки. Функциональные показатели качества контроля (показатели его эффективности) должны количественно определять степень приспособленности и выполнения контролем поставленных перед ним задач. В общем случае контроля такими показателями могут служить коэффициенты, численно равные условным вероятностям соответствующих событий при условии наличия ошибки.Для обнаруживающего и локализующего контроля такими коэффициентами являются: коэффициент обнаружения ошибок - Кобн = Nобн / Nош - Ро6н / Рош; коэффициент необнаружения ошибок - Кно = Nиo / Noш = Рно / Рош; коэффициент локализации ошибок Клок для большинства методов локализующего контроля равен коэффициенту обнаружения, то есть Клок = /Кобн Методы контроля, исправляющие ошибки, характеризуются следующими коэффициентами: исправления ошибок Киспр = Nиспр / Nош = Риспр / Рот; искажения ошибок Киск = Nиск / Nош = Риск / Рош; обнаружения ошибок Кобн = No6 / Nош = Робн / Рош; необнаружения ошибок Кно = Nнo / Nнош = Рно / Рош. В этих соотношениях: N - число структурных элементов (символов, реквизитов, показателей и т. д.) в информационной совокупности; Nно, Nиспр, Nиск, Nобн, - число ошибок, которые в процессе контроля, соответственно, не обнаруживаются, правильно исправляются, неверно исправляются (искажаются), только обнаруживаются (факт наличия которых просто устанавливается, а сами они не исправляются); Рош, Ро6н, Рно, Риспр. -Риск

1.5 Безопасность информационных систем

2.1 Эффективность информационных систем

2.2 Показатели технико-эксплуатационной эффективности

2.3 Показатели экономической эффективности

Заключение

Список используемой литературы

резервирование элементов, узлов, устройств системы и использование специальных устройств, осуществляющих процедуры аппаратного контроля и т. д.

Технологическое и эксплуатационное обеспечения предназначены для повышения надежности работы технических средств и технологических комплексов. Технологическое обеспечение включает в себя выбор схемных и конструктивных решений применения отдельных технических устройств, технологий и протоколов реализации информационных процессов. Эксплуатационное обеспечение связано с выбором режимов работы устройств, технологий профилактического их обслуживания.

Социальное и эргатическое обеспечения имеют своим назначением повышение надежности работы эргатических структурных звеньев системы. Поскольку подавляющее большинство ошибок в информации возникает как раз из-за функциональной ненадежности именно этих звеньев (человеческого фактора), в литературе особенности их работы рассмотрены весьма обстоятельно. В одной из лучших работ по этой тематике указываются пять видов причин ошибок, возникающих в эргатических звеньях:

  • психологические - неадекватность восприятия информации, выработка и реализация неоптимальной стратегии;

  • мотивационные - неправильная постановка задачи, несогласованность целей субъекта с целями управления;

  • эмоциональные - неустойчивые изменения преобразующих свойств субъекта от внешних и внутренних причин;

  • интуитивные - неформализованный в сознании субъекта опыт, отражающий реальную ситуацию нерелевантно;

  • эволюционные - устойчивые изменения преобразующих свойств субъекта в результате обучения или забывания.

Указанные причины могут привести к субъективным ошибкам трех типов:

  • потере части полезной информации;

  • внесению дополнительной (полезной или вредной) информации, не содержащейся в исходном сообщении;

  • неадекватному преобразованию информации.

К социальному обеспечению относятся, например, такие факторы, как создание здоровой психологической обстановки в коллективе, повышение ответственности за выполненную работу, повышение квалификации специалистов
, увеличение моральной и материальной заинтересованности в правильности выполнения работы. Особенно важно обеспечить согласованность целей субъекта с целями управления: лишь тогда, когда работник заинтересован в получении объективных, достоверных данных, они могут быть получены.

Эргатическое обеспечение включает в себя комплекс факторов, связанных с рациональной организацией работы человека в системе. Это, в первую очередь, правильное распределение функций между людьми и техническими средствами, обоснованность норм и стандартов работы, оптимальность интенсивности и ритмичности, построение рабочих мест в соответствии с требованиями эргономики.

Алгоритмическое обеспечение широко применяется для повышения надежности системы (обеспечение высокого качества и безошибочности алгоритмов и программ преобразования информации) и для реализации контроля достоверности информации.

Информационное синтаксическое и семантическое обеспечения заключаются во введении в ИС специальной информационной избыточности, соответственно, избыточности данных и смысловой избыточности, обусловливающих возможность проведения контроля достоверности информации.

Поскольку понятие «избыточность» - очень важное понятие в теории надежности, причем наличие избыточности является необходимым условием возможности проведения контрольных процедур, рассмотрим его более подробно.

Первоначально понятие избыточности использовалось только применительно к информации. Так, X. Найквист, впервые применивший данный термин, избыточной считал ту бесполезную составляющую сигнала, которая не передает сообщения; К. Шеннон количественно определил избыточность источника информации через свою любимую энтропию. В настоящее время понятие избыточности существенно отличается от первоначального: оно расширилось и максимально приблизилось к понятию «резервирование». Согласно ГОСТ 18347-75, резервирование - это метод повышения надежности объекта введением избыточности.

Там же избыточность определена как дополнительные средства и возможности сверх минимально необходимых для выполнения объектом заданных функций.

Избыточность чаще всего используется для выражения относительной категории, но может иметь и абсолютное исчисление. Так, количественно абсолютную избыточность Rабс можно определить как разность между используемым разнообразием Vi системы по рассматриваемому виду элементов обеспечения и минимально необходимым ее разнообразием Voi, достаточным для выполнения возложенных на систему функций:



Относительная избыточность или просто избыточность R:

Отношение носит название коэффициента избыточности.

Виды избыточности, как правило, совпадают с видами обеспечения, в рамках которого они формируются. Например, в структурном обеспечении используется структурная избыточность, в алгоритмическом обеспечении - алгоритмическая избыточность и т. п. Но понятие «обеспечение» шире понятия «избыточность», поскольку обеспечение обуславливает как возможность проведения процедур, так и сами процедуры, а избыточность - только саму такую возможность.

Синтаксическая избыточность информации непосредственно связана с понятием информативности (содержательности). Если сообщение, содержащее объем данных Vд, можно отобразить меньшим объемом данных V0д, то говорят, что данное сообщение имеет синтаксическую избыточность
Rабс = Vд V0д.
Если информация закодирована в системе счисления с основанием т, то синтаксическая абсолютная избыточность может быть определена как разность между количеством содержащихся в ней символов п и минимально возможным количеством символов щ, необходимых для представления всего множества семантически различимых сообщений N.

Поскольку n0 = LOGm(N), то Rabc = n- LOGm(N).

Избыточная семантическая информация - это информация, превышающая полную информацию и формально являющаяся лишней в сообщении, то есть такой, без которой можно точно установить смысл и значение сообщения.

Избыточность, как правило, вводится в систему искусственно, специально для повышения надежности системы и обеспечения достоверности преобразуемой информации, но может быть и естественной, внутренне присущей самой системе. Последнее часто относится к семантической избыточности - семантическая избыточность связана с наличием в сообщении сведений, коррелирующих между собой или уже известных пользователю.

Следует заметить, что многие виды обеспечения надежности и достоверности тесно взаимосвязаны и пересекаются друг с другом, особенно это касается видов обеспечения, связанных с введением соответствующей им избыточности. Практически применение только одного какого-либо вида избыточности для обеспечения надежности и достоверности работы системы встречается довольно редко; значительно более эффективным оказывается комплексное использование сразу нескольких видов избыточности для одних и тех же процедур преобразования информации.


Несколько специфичны вопросы обеспечения целостности базы данных в ИС. К надежности базы данных (БД) предъявляются особо жесткие требования, поскольку информация, хранимая в них, используется обычно многократно.

Под целостностью базы данных понимается такое ее состояние, когда имеет место полное и точное сохранение всех введенных в БД данных и отношений между ними, иными словами, если не произошло случайной или несанкционированной модификации, разрушения или искажения этих данных или их структуры.

Для сведения к минимуму потерь от случайных искажений данных необходимо иметь возможность своевременно обнаруживать и устранять возникающие ошибки на этапах хранения, обновления и реорганизации базы данных. Это требует большого набора вспомогательных программ обслуживания баз данных, возможно, даже автономных по отношению к системе управления базой данных.

В частности, к ним относятся программы:

  • ведения системного журнала, подробно фиксирующего каждую операцию (транзакцию) над базой данных;

  • эффективного контроля достоверности;

  • Q репликации для получения копии базы данных (или ее частей) с целью последующего их восстановления при искажении;

  • восстановления для возврата базы данных в первоначальное состояние при обнаружении искажения данных (используют копии базы данных и массивы изменений, формируемые в журнале).

Для надежной работы базы данных ИС осуществляются:

  • непрерывное администрирование базы данных ИС;

  • регистрация каждого имевшего место доступа к базе данных и выполненных изменений в журнале БД.

Системный журнал изменений содержит хронологическую последовательность записей всей информации об изменениях, вносимых в базу данных. В частности, в этот журнал заносятся:

  • текст запроса на изменение БД («журнал заявок»), содержащий описание транзакции, терминала и пользователя, время, текст исходного сообщения, тип и адрес изменения данных;

  • копии файлов БД до внесения в нее изменений («до-журнал»);

  • копии файлов БД после внесения в нее изменений («после-журнал»).

  • использование средств СУБД для санкционированного доступа и защиты данных (формирование подсхем базы данных как подмножества структуры базы данных);

  • создание страховых (резервных) копий базы данных, «зеркалирование» дисков;

  • ведение четко регламентированной системы документооборота и форм документов, разрешенных к использованию;

  • криптографирование базы данных;

  • формирование групп пользователей и задание для них профилей работы и привилегий доступа к ресурсам БД.


Для обеспечения целостности баз данных могут устанавливаться специальные режимы использования файлов базы данных:

  • монопольный - запрещающий обращения к БД от всех программ, кроме одной, вносящей изменения и считывающей информацию из полей базы данных;

  • защищенный - вносить изменения в БД вправе лишь одна программа, а остальные программы могут только считывать информацию;

  • разделенный - все программы могут и изменять и читать базу данных, но если одна из них начала работать с БД, остальные ждут окончания этой работы.

Резервирование и восстановление баз данных при аварийных завершениях программы (отказ системы, повреждение носителя) выполняется также по нескольким стратегиям. В частности, резервирование файлов базы данных может выполняться:

  • в одном поколении (создание точных копий - дублей файлов БД);

  • в разных поколениях (хранятся дубли нескольких временных поколений файлов: «дед», «отец», «сын» и т. д., а также ведется системный журнал изменений);

  • смешанное резервирование, использующее совместно две первые стратегии.

Наилучшие результаты обеспечивает смешанное резервирование с системным журналом и контрольными точками отката (рестарта).

Контрольные точки (точки рестарта, точки отката) - место повторного запуска программы при аварийном ее завершении. В контрольных точках обычно выполняются: внесение изменений в БД (в том числе всех изменений, ожидающих своей очереди - неоперативные файлы), разблокирование всех файлов, на обращение к которым был наложен запрет, запись информации о контрольной точке в системный журнал.

Использование массивов RAID (Redundant Array of Inexpensive Disks - избыточный массив недорогих дисков) существенно уменьшает риск простоя системы из-за отказов накопителей на магнитных дисках, которые являются одним из наименее надежных компонентов современных компьютеров.

Отказоустойчивые компьютеры.

Все большее распространение находят однопроцессорные или многопроцессорные компьютеры (чаще всего серверы) с отказоустойчивыми аппаратными компонентами. В отличие от кластерных отказоустойчивые системы (fault tolerant) упор делают на аппаратное обеспечение надежности и гарантируют не просто сокращение времени простоя (увеличение коэффициента готовности), а вообще предотвращение и исключение возможности появления таких простоев. В основу архитектуры отказоустойчивых систем заложено дублирование, в том числе и многократное, технических компонентов.