ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.04.2021
Просмотров: 593
Скачиваний: 1
A
R
Ƚ
L
1
2
3
4
Ɋɢɫ
. 32.
Ʉɨɦɩɟɧɫɚɰɢɨɧɧɚɹ ɫɯɟɦɚ ɢɡɦɟɪɟɧɢɹ ɭɞɟɥɶɧɨɣ
ɷɥɟɤɬɪɨɩɪɨɜɨɞɧɨɫɬɢ ɞɜɭɯɡɨɧɞɨɜɵɦ ɦɟɬɨɞɨɦ
ȼ
ɩɪɚɤɬɢɤɟ
ɫɨɜɪɟɦɟɧɧɨɣ
ɦɢɤɪɨɷɥɟɤɬɪɨɧɢɤɢ
ɧɚɢɛɨɥɟɟ
ɱɚɫɬɨ
ɩɪɢɯɨɞɢɬɫɹ ɢɦɟɬɶ ɞɟɥɨ ɫ ɨɛɪɚɡɰɚɦɢ ɩɥɨɫɤɨɣ ɮɨɪɦɵ
(
ɤɪɟɦɧɢɟɜɵɟ
ɩɥɚɫɬɢɧɵ
,
ɩɨɥɭɩɪɨɜɨɞɧɢɤɨɜɵɟ ɩɥɟɧɤɢ ɢ ɬ
.
ɞ
.).
Ⱦɥɹ ɬɚɤɢɯ ɨɛɪɚɡɰɨɜ ɛɵɥ
ɪɚɡɪɚɛɨɬɚɧ ɫɩɟɰɢɚɥɶɧɵɣ ɦɟɬɨɞ ɢɡɦɟɪɟɧɢɹ ɷɥɟɤɬɪɨɮɢɡɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ
,
ɧɚɡɵɜɚɟɦɵɣ ɦɟɬɨɞɨɦ ȼɚɧ ɞɟɪ ɉɚɭ
.
Ⱦɨɫɬɨɢɧɫɬɜɨɦ ɞɚɧɧɨɝɨ ɦɟɬɨɞɚ ɹɜɥɹɟɬɫɹ
ɟɝɨ ɧɟɡɚɜɢɫɢɦɨɫɬɶ ɨɬ ɮɨɪɦɵ ɤɪɚɹ ɩɥɨɫɤɨɝɨ ɨɛɪɚɡɰɚ
.
ȼ ɫɥɭɱɚɟ ɢɡɦɟɪɟɧɢɹ ɭɞɟɥɶɧɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɫɭɳɧɨɫɬɶ ɦɟɬɨɞɚ
ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɫɥɟɞɭɸɳɟɦ
.
ɇɚ ɩɟɪɢɮɟɪɢɢ ɩɥɨɫɤɨɝɨ ɨɛɪɚɡɰɚ
(
ɪɢɫ
. 33)
ɫɨɡɞɚɸɬɫɹ ɱɟɬɵɪɟ ɤɨɧɬɚɤɬɚ
– A, B, C
ɢ
D:
Ɋɢɫ
. 33.
ɋɯɟɦɚ ɪɚɫɩɨɥɨɠɟɧɢɹ ɡɨɧɞɨɜ ɩɪɢ ɢɡɦɟɪɟɧɢɢ ɷɥɟɤɬɪɨɮɢɡɢɱɟɫɤɢɯ
ɫɜɨɣɫɬɜ ɩɨɥɭɩɪɨɜɨɞɧɢɤɨɜ ɦɟɬɨɞɨɦ ȼɚɧ ɞɟɪ ɉɚɭ
ɂɡɦɟɪɹɸɬɫɹ ɞɜɚ ɫɨɩɪɨɬɢɜɥɟɧɢɹ
:
R
ABCD
= U
CD
/I
AB
ɢ
R
BCDA
= U
DA
/I
BC
.
56
Ɍɟɨɪɟɬɢɱɟɫɤɢ ɭɫɬɚɧɨɜɥɟɧɨ
,
ɱɬɨ ɭɞɟɥɶɧɚɹ ɷɥɟɤɬɪɨɩɪɨɜɨɞɧɨɫɬɶ ɦɨɠɟɬ ɛɵɬɶ
ɧɚɣɞɟɧɚ ɩɨ ɭɪɚɜɧɟɧɢɸ
:
1/
V
= (
S
/ln2)[ (R
ABCD
+ R
BCDA
)/2] (R
ABCD
/R
BCDA
) f d,
(5.8)
ɝɞɟ
,
d
–
ɬɨɥɳɢɧɚ ɨɛɪɚɡɰɚ
(
ɞɨɥɠɧɚ ɛɵɬɶ ɦɧɨɝɨ ɦɟɧɶɲɟ ɪɚɫɫɬɨɹɧɢɹ ɦɟɠɞɭ
ɤɨɧɬɚɤɬɚɦɢ
);
f
–
ɬɚɛɭɥɢɪɨɜɚɧɧɚɹ ɮɭɧɤɰɢɹ ɩɨɩɪɚɜɨɤ
,
ɡɚɜɢɫɹɳɚɹ ɨɬ ɫɨɨɬɧɨɲɟɧɢɹ
R
ABCD
/R
BCDA
(
ɡɧɚɱɟɧɢɹ ɷɬɨɣ ɮɭɧɤɰɢɢ ɩɪɢɜɟɞɟɧɵ ɜ ɬɚɛɥ
. 6).
Ɍɚɛɥɢɰɚ
6
Ɏɭɧɤɰɢɹ ɩɨɩɪɚɜɨɤ
f(R
ABCD
/R
BCDA
)
R
ABCD
/R
BCDA
f
R
ABCD
/R
BCDA
f
R
ABCD
/R
BCDA
f
1,0
1,2
1,4
1,6
1,8
2,0
2,2
2,4
2,6
2,8
3,0
3,5
4,0
4,5
5,0
5,5
1,000
0,995
0,990
0,985
0,975
0,970
0,963
0,955
0,945
0,935
0,925
0,905
0,882
0,865
0,847
0,830
6,0
6,5
7,0
7,5
8,0
8,5
9,0
9,5
10
12
14
16
18
20
23
25
0,815
0,800
0,790
0,775
0,765
0,757
0,747
0,740
0,730
0,700
0,675
0,650
0,625
0,610
0,592
0,570
30
35
40
45
50
55
60
70
80
90
100
150
200
300
400
500
0,545
0,520
0,500
0,485
0,475
0,465
0,455
0,440
0,427
0,415
0,405
0,375
0,367
0,355
0,353
0,350
5.2.2.
ɗɮɮɟɤɬ ɏɨɥɥɚ
.
Ʉɨɧɰɟɧɬɪɚɰɢɹ
,
ɬɢɩ ɢ ɩɨɞɜɢɠɧɨɫɬɶ
ɧɨɫɢɬɟɥɟɣ ɡɚɪɹɞɚ
ɂɡɦɟɪɟɧɢɟ
ɤɨɷɮɮɢɰɢɟɧɬɚ
ɏɨɥɥɚ
R
H
ɫɨɜɦɟɫɬɧɨ
ɫ
ɭɞɟɥɶɧɵɦ
ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ ɩɨɡɜɨɥɹɟɬ ɭɫɬɚɧɨɜɢɬɶ ɬɚɤɢɟ ɜɚɠɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ
ɩɨɥɭɩɪɨɜɨɞɧɢɤɚ
,
ɤɚɤ ɤɨɧɰɟɧɬɪɚɰɢɹ
,
ɩɨɞɜɢɠɧɨɫɬɶ ɢ ɬɢɩ ɫɜɨɛɨɞɧɵɯ
ɧɨɫɢɬɟɥɟɣ ɡɚɪɹɞɚ
.
Ɏɢɡɢɱɟɫɤɚɹ ɫɭɳɧɨɫɬɶ ɷɮɮɟɤɬɚ ɏɨɥɥɚ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɫɥɟɞɭɸɳɟɦ
.
ɑɟɪɟɡ ɨɛɪɚɡɟɰ
,
ɢɦɟɸɳɢɣ ɮɨɪɦɭ ɩɚɪɚɥɥɟɥɟɩɢɩɟɞɚ
(
ɪɢɫ
. 34),
ɩɪɨɩɭɫɤɚɸɬ
ɬɨɤ ɩɚɪɚɥɥɟɥɶɧɨ ɨɫɢ
ɯ
.
ȿɫɥɢ ɜɞɨɥɶ ɨɫɢ
y,
ɩɟɪɩɟɧɞɢɤɭɥɹɪɧɨɣ ɤ ɨɫɢ
x
,
ɩɪɢɥɨɠɢɬɶ ɦɚɝɧɢɬɧɨɟ ɩɨɥɟ
B
B
y
,
ɬɨ ɞɜɢɠɭɳɢɟɫɹ ɜɞɨɥɶ
x
ɫɨ ɫɤɨɪɨɫɬɶɸ
V
x
ɧɨɫɢɬɟɥɢ ɡɚɪɹɞɚ ɛɭɞɭɬ ɨɬɤɥɨɧɹɬɶɫɹ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɫɢɥɵ Ʌɨɪɟɧɰɚ ɜ
ɧɚɩɪɚɜɥɟɧɢɢ
z
,
ɩɟɪɩɟɧɞɢɤɭɥɹɪɧɨɦ ɤ
x
ɢ
y
:
F = qV
x
B
B
y
.
(5.9)
57
ɉɨɫɤɨɥɶɤɭ ɧɚɩɪɚɜɥɟɧɢɹ ɫɤɨɪɨɫɬɟɣ ɢ ɡɧɚɤɢ ɡɚɪɹɞɚ ɷɥɟɤɬɪɨɧɨɜ ɢ
ɞɵɪɨɤ ɪɚɡɥɢɱɧɵ
,
ɨɧɢ ɛɭɞɭɬ ɨɬɤɥɨɧɹɬɶɫɹ ɜ ɨɞɧɭ ɢ ɬɭ ɠɟ ɫɬɨɪɨɧɭ
.
Ɍɚɤɢɦ
ɨɛɪɚɡɨɦ
,
ɜ ɧɚɩɪɚɜɥɟɧɢɢ
z
ɩɨɹɜɢɬɫɹ ɩɨɩɟɪɟɱɧɵɣ ɬɨɤ
I
z
= I
nz
+ I
pz
.
Ɍɚɤ ɤɚɤ
ɨɛɪɚɡɟɰ ɢɦɟɟɬ ɤɨɧɟɱɧɵɟ ɪɚɡɦɟɪɵ ɜ ɧɚɩɪɚɜɥɟɧɢɢ ɨɫɢ
z
,
ɬɨ ɩɪɨɢɡɨɣɞɟɬ
ɧɚɤɨɩɥɟɧɢɟ ɡɚɪɹɞɨɜ ɧɚ ɜɟɪɯɧɟɣ ɝɪɚɧɢ ɢ ɜɨɡɧɢɤɧɟɬ ɢɯ ɧɟɞɨɫɬɚɬɨɤ ɧɚ
ɧɢɠɧɟɣ
.
ɉɪɨɬɢɜɨɩɨɥɨɠɧɵɟ ɝɪɚɧɢ ɡɚɪɹɠɚɸɬɫɹ
,
ɢ ɜɨɡɧɢɤɚɟɬ ɩɨɩɟɪɟɱɧɨɟ
ɷɥɟɤɬɪɢɱɟɫɤɨɟ ɩɨɥɟ
E
z
,
ɤɨɬɨɪɨɟ ɪɚɫɬɟɬ ɞɨ ɬɟɯ ɩɨɪ
,
ɩɨɤɚ ɧɟ ɫɤɨɦɩɟɧɫɢɪɭɟɬ
ɩɨɥɟ ɫɢɥɵ Ʌɨɪɟɧɰɚ
,
ɢ ɩɨɩɟɪɟɱɧɵɣ ɬɨɤ
I
z
ɧɟ ɫɬɚɧɟɬ ɪɚɜɧɵɦ ɧɭɥɸ
.
V
U
H
h
y
x
z
I
L
1
2
3
d
Ɋɢɫ
. 34.
ɋɯɟɦɚ ɢɡɦɟɪɟɧɢɹ ɷɮɮɟɤɬɚ ɏɨɥɥɚ
Ɋɟɡɭɥɶɬɢɪɭɸɳɟɟ ɩɨɥɟ
E
ɜ ɨɛɪɚɡɰɟ ɛɭɞɟɬ ɩɨɜɟɪɧɭɬɨ ɨɬɧɨɫɢɬɟɥɶɧɨ
E
x
ɧɚ ɧɟɤɨɬɨɪɵɣ ɭɝɨɥ
M
,
ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɵɣ ɦɚɝɧɢɬɧɨɣ ɢɧɞɭɤɰɢɢ
:
tg
M
= E
z
/
E
x
= u
H
B
B
y
(5.10)
Ʉɨɷɮɮɢɰɢɟɧɬ
ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ
u
H
ɢɦɟɟɬ
ɪɚɡɦɟɪɧɨɫɬɶ
ɩɨɞɜɢɠɧɨɫɬɢ ɢ ɧɚɡɵɜɚɟɬɫɹ
ɯɨɥɥɨɜɫɤɨɣ ɩɨɞɜɢɠɧɨɫɬɶɸ
.
ɋɥɟɞɭɟɬ ɢɦɟɬɶ ɜ
ɜɢɞɭ
,
ɱɬɨ ɯɨɥɥɨɜɫɤɚɹ ɩɨɞɜɢɠɧɨɫɬɶ
u
H
ɨɬɥɢɱɚɟɬɫɹ ɨɬ ɦɢɤɪɨɫɤɨɩɢɱɟɫɤɨɣ
ɩɨɞɜɢɠɧɨɫɬɢ
u
ɜ ɮɨɪɦɭɥɟ ɞɥɹ ɭɞɟɥɶɧɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ
.
ȼ ɫɥɚɛɵɯ ɦɚɝɧɢɬɧɵɯ ɩɨɥɹɯ
E
z
ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨ ɩɥɨɬɧɨɫɬɢ ɬɨɤɚ
J
x
ɢ
ɦɚɝɧɢɬɧɨɣ ɢɧɞɭɤɰɢɢ
B
B
y
:
E
z
= R
H
J
x
B
B
y
,
(5.11)
ɝɞɟ
R
H
–
ɤɨɷɮɮɢɰɢɟɧɬ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ
,
ɧɚɡɵɜɚɟɦɵɣ ɤɨɷɮɮɢɰɢɟɧɬɨɦ
ɏɨɥɥɚ
.
ɉɨɫɤɨɥɶɤɭ
J
x
=
V
E
x
,
ɬɨ ɫ ɭɱɟɬɨɦ ɭɞɟɥɶɧɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ
,
ɞɥɹ
ɩɨɥɭɩɪɨɜɨɞɧɢɤɚ
n-
ɬɢɩɚ
,
ɩɨɥɭɱɚɟɦ
:
58
R
Hn
= u
Hn
/ u
n
ne = r
n
/ne,
(5.12)
ɝɞɟ
u
Hn
ɢ
u
n
–
ɯɨɥɥɨɜɫɤɚɹ ɢ ɦɢɤɪɨɫɤɨɩɢɱɟɫɤɚɹ ɩɨɞɜɢɠɧɨɫɬɶ ɷɥɟɤɬɪɨɧɨɜ
ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ
;
n
–
ɤɨɧɰɟɧɬɪɚɰɢɹ ɷɥɟɤɬɪɨɧɨɜ
;
r
n
= u
Hn
/u
n
–
ɤɨɷɮɮɢɰɢɟɧɬ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ
,
ɧɚɡɵɜɚɟɦɵɣ ɯɨɥɥ
-
ɮɚɤɬɨɪɨɦ
.
Ⱥɧɚɥɨɝɢɱɧɨ
,
ɞɥɹ ɩɨɥɭɩɪɨɜɨɞɧɢɤɚ
p-
ɬɢɩɚ
:
R
Hp
= u
Hp
/ u
p
pe = r
p
/pe,
(5.13)
ɝɞɟ
u
Hp
ɢ
u
p
–
ɯɨɥɥɨɜɫɤɚɹ ɢ ɦɢɤɪɨɫɤɨɩɢɱɟɫɤɚɹ ɩɨɞɜɢɠɧɨɫɬɶ ɞɵɪɨɤ
ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ
;
p –
ɤɨɧɰɟɧɬɪɚɰɢɹ ɞɵɪɨɤ
;
r
p
= u
Hp
/u
p
.
ɉɪɢ ɫɦɟɲɚɧɧɨɦ ɬɢɩɟ ɩɪɨɜɨɞɢɦɨɫɬɢ
:
R
H
= (r
n
nu
2
n
- r
p
pu
2
p
) / e(nu
n
+ pu
p
)
2
.
(5.14)
Ɂɧɚɱɟɧɢɟ
r
ɡɚɜɢɫɢɬ
ɨɬ
ɦɟɯɚɧɢɡɦɚ
ɪɚɫɫɟɹɧɢɹ
ɧɨɫɢɬɟɥɟɣ
.
ȼ
ɧɟɜɵɪɨɠɞɟɧɧɨɦ ɩɨɥɭɩɪɨɜɨɞɧɢɤɟ ɩɪɢ ɪɚɫɫɟɹɧɢɢ ɧɚ ɬɟɩɥɨɜɵɯ ɤɨɥɟɛɚɧɢɹɯ
ɪɟɲɟɬɤɢ
r = r
n
= r
p
=
1.17,
ɩɪɢ ɪɚɫɫɟɹɧɢɢ ɧɚ ɢɨɧɢɡɢɪɨɜɚɧɧɵɯ ɩɪɢɦɟɫɧɵɯ
ɰɟɧɬɪɚɯ
r =
1,93,
ɚ ɩɪɢ ɪɚɫɫɟɹɧɢɢ ɧɚ ɧɟɣɬɪɚɥɶɧɵɯ ɰɟɧɬɪɚɯ
r =
1.
Ⱦɥɹ ɨɛɪɚɡɰɨɜ ɜ ɮɨɪɦɟ ɩɚɪɚɥɥɟɥɟɩɢɩɟɞɚ ɦɟɬɨɞɢɤɚ ɢɡɦɟɪɟɧɢɹ
ɤɨɷɮɮɢɰɢɟɧɬɚ ɏɨɥɥɚ ɡɚɤɥɸɱɚɟɬɫɹ ɜ ɫɥɟɞɭɸɳɟɦ
.
ɇɚ ɜɟɪɯɧɟɣ ɝɪɚɧɢ ɨɛɪɚɡɰɚ
ɪɚɡɦɟɳɚɸɬɫɹ ɞɜɚ ɡɨɧɞɚ
(1
ɢ
2)
ɜɞɨɥɶ ɧɚɩɪɚɜɥɟɧɢɹ ɬɨɤɚ
,
ɚ ɫɨ ɫɬɨɪɨɧɵ
ɧɢɠɧɟɣ ɝɪɚɧɢ ɭɫɬɚɧɚɜɥɢɜɚɟɬɫɹ ɡɨɧɞ
3,
ɜɫɬɪɟɱɧɵɣ ɨɞɧɨɦɭ ɢɡ ɜɟɪɯɧɢɯ
(
ɪɢɫ
. 34).
ɋ ɩɨɦɨɳɶɸ ɡɨɧɞɨɜ
1
ɢ
2
ɢɡɦɟɪɹɟɬɫɹ ɩɪɨɜɨɞɢɦɨɫɬɶ
,
ɚ ɡɨɧɞɵ
1
ɢ
3
ɫɥɭɠɚɬ ɞɥɹ ɢɡɦɟɪɟɧɢɹ ɯɨɥɥɨɜɫɤɨɣ ɪɚɡɧɨɫɬɢ ɩɨɬɟɧɰɢɚɥɨɜ
U
H
.
Ⱦɥɹ
ɩɨɥɭɩɪɨɜɨɞɧɢɤɚ
n-
ɬɢɩɚ
:
R
Hn
= U
H
d/I
x
B
B
y
,
(5.15)
ɝɞɟ
d
–
ɬɨɥɳɢɧɚ ɨɛɪɚɡɰɚ ɜ ɧɚɩɪɚɜɥɟɧɢɢ ɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ
.
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ
,
ɢɡɦɟɪɹɹ ɤɨɷɮɮɢɰɢɟɧɬ ɏɨɥɥɚ ɢ ɡɧɚɹ ɦɟɯɚɧɢɡɦ
ɪɚɫɫɟɹɧɢɹ ɧɨɫɢɬɟɥɟɣ
,
ɦɨɠɧɨ ɧɚɣɬɢ ɤɨɧɰɟɧɬɪɚɰɢɸ ɷɥɟɤɬɪɨɧɨɜ ɢ ɞɵɪɨɤ ɜ
ɩɨɥɭɩɪɨɜɨɞɧɢɤɚɯ
n-
ɢ
p-
ɬɢɩɚ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ
.
Ɉɞɧɚɤɨ
,
ɤɨɝɞɚ ɩɪɨɜɨɞɢɦɨɫɬɶ
ɹɜɥɹɟɬɫɹ ɫɦɟɲɚɧɧɨɣ
,
ɧɟɜɨɡɦɨɠɧɨ ɪɚɡɞɟɥɶɧɨɟ ɨɩɪɟɞɟɥɟɧɢɟ ɤɨɧɰɟɧɬɪɚɰɢɢ
ɷɥɟɤɬɪɨɧɨɜ ɢ ɞɵɪɨɤ ɬɨɥɶɤɨ ɫ ɩɨɦɨɳɶɸ ɷɮɮɟɤɬɚ ɏɨɥɥɚ
.
Ⱦɥɹ
ɩɥɨɫɤɢɯ
ɨɛɪɚɡɰɨɜ
ɩɪɨɢɡɜɨɥɶɧɨɣ
ɮɨɪɦɵ
,
ɚ
ɬɚɤɠɟ
ɞɥɹ
ɷɩɢɬɚɤɫɢɚɥɶɧɵɯ ɩɥɟɧɨɤ ɩɪɢɦɟɧɢɦ ɦɟɬɨɞ ȼɚɧ ɞɟɪ ɉɚɭ
.
ȼ ɫɥɭɱɚɟ ɢɡɦɟɪɟɧɢɹ
ɷɮɮɟɤɬɚ ɏɨɥɥɚ ɩɪɢɦɟɧɹɸɬɫɹ ɫɥɟɞɭɸɳɢɟ ɮɨɪɦɭɥɵ
.
Ʉɚɤ ɢ ɩɪɢ ɢɡɦɟɪɟɧɢɢ
ɭɞɟɥɶɧɨɣ
ɷɥɟɤɬɪɨɩɪɨɜɨɞɧɨɫɬɢ
,
ɧɚ
ɩɟɪɢɮɟɪɢɢ
ɩɥɨɫɤɨɝɨ
ɨɛɪɚɡɰɚ
ɪɚɫɩɨɥɚɝɚɸɬɫɹ
ɬɨɱɟɱɧɵɟ
ɤɨɧɬɚɤɬɵ
.
ɏɨɥɥɨɜɫɤɚɹ
ɩɨɞɜɢɠɧɨɫɬɶ
59
ɪɚɫɫɱɢɬɵɜɚɟɬɫɹ ɩɪɢ ɩɨɦɨɳɢ ɢɡɦɟɪɟɧɢɹ ɫɨɩɪɨɬɢɜɥɟɧɢɹ
R
BCDA
= U
AC
/I
BD
ɞɨ ɢ
ɩɨɫɥɟ ɜɤɥɸɱɟɧɢɹ ɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ ɢ ɢɡɦɟɪɟɧɢɹ ɭɞɟɥɶɧɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ
.
ɂɡɦɟɧɟɧɢɟ ɫɨɩɪɨɬɢɜɥɟɧɢɹ
'
R
BCDA
(
ɪɢɫ
. 33),
ɜɨɡɧɢɤɚɸɳɟɟ ɩɨɞ ɞɟɣɫɬɜɢɟɦ
ɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ ɢ ɧɚɣɞɟɧɧɚɹ ɩɨ ɜɵɲɟɢɡɥɨɠɟɧɧɨɣ ɦɟɬɨɞɢɤɟ ɭɞɟɥɶɧɚɹ
ɷɥɟɤɬɪɨɩɪɨɜɨɞɧɨɫɬɶ
,
ɢɫɩɨɥɶɡɭɟɬɫɹ
ɞɥɹ
ɧɚɯɨɠɞɟɧɢɹ
ɯɨɥɥɨɜɫɤɨɣ
ɩɨɞɜɢɠɧɨɫɬɢ
u
H
ɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɫɜɨɛɨɞɧɵɯ ɧɨɫɢɬɟɥɟɣ ɡɚɪɹɞɚ
N
:
u
H
=
'
R
BCDA
d
V
/B,
(5.16)
N = r
V
/eu
H
.
(5.17)
ɂɡɭɱɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɧɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɩɨɞɜɢɠɧɨɫɬɢ ɧɨɫɢɬɟɥɟɣ ɡɚɪɹɞɚ
ɩɨɡɜɨɥɹɟɬ ɜɵɹɜɢɬɶ ɦɟɯɚɧɢɡɦ ɪɚɫɫɟɹɧɢɹ ɡɚɪɹɞɨɜ
,
ɚ ɬɚɤɠɟ ɩɨɥɭɱɢɬɶ
ɧɟɤɨɬɨɪɨɟ
ɩɪɟɞɫɬɚɜɥɟɧɢɟ
ɨ
ɩɨɜɟɞɟɧɢɢ
ɩɪɢɦɟɫɧɵɯ
ɰɟɧɬɪɨɜ
ɜ
ɩɨɥɭɩɪɨɜɨɞɧɢɤɟ
.
Ɉɛɳɢɣ ɜɢɞ ɬɟɦɩɟɪɚɬɭɪɧɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɩɨɞɜɢɠɧɨɫɬɢ ɜ
ɩɨɥɭɩɪɨɜɨɞɧɢɤɟ ɦɨɠɧɨ ɜɵɪɚɡɢɬɶ ɮɨɪɦɭɥɨɣ
:
u= AT
-p
,
(5.18)
ɝɞɟ
A
–
ɤɨɷɮɮɢɰɢɟɧɬ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨɫɬɢ
,
p
–
ɩɨɤɚɡɚɬɟɥɶ ɫɬɟɩɟɧɢ
,
ɡɚɜɢɫɹɳɢɣ ɨɬ ɦɟɯɚɧɢɡɦɚ ɪɚɫɫɟɹɧɢɹ ɧɨɫɢɬɟɥɟɣ
.
ɇɚɩɨɦɧɢɦ
,
ɱɬɨ ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɮɨɪɦɭɥɚɦɢ
(4.1), (4.2),
ɩɨɤɚɡɚɬɟɥɶ
ɫɬɟɩɟɧɢ ɛɭɞɟɬ ɫɨɫɬɚɜɥɹɬɶ
+3/2
ɩɪɢ ɪɚɫɫɟɹɧɢɢ ɧɚ ɩɪɢɦɟɫɹɯ ɢ
–3/2
ɩɪɢ
ɪɚɫɫɟɹɧɢɢ ɧɚ ɬɟɩɥɨɜɵɯ ɤɨɥɟɛɚɧɢɹɯ ɪɟɲɟɬɤɢ
(
ɫɦ
.
ɝɥ
. 4.2).
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ
,
ɢɡɦɟɪɢɜ ɭɞɟɥɶɧɭɸ ɷɥɟɤɬɪɨɩɪɨɜɨɞɧɨɫɬɶ ɢ ɧɚɣɞɹ ɢɡ
ɢɡɦɟɪɟɧɢɣ ɤɨɷɮɮɢɰɢɟɧɬɚ ɏɨɥɥɚ ɤɨɧɰɟɧɬɪɚɰɢɸ ɧɨɫɢɬɟɥɟɣ ɩɪɢ ɪɚɡɥɢɱɧɵɯ
ɬɟɦɩɟɪɚɬɭɪɚɯ
,
ɦɨɠɧɨ ɪɚɫɫɱɢɬɚɬɶ ɩɨɞɜɢɠɧɨɫɬɶ ɢ ɩɨɫɬɪɨɢɬɶ ɝɪɚɮɢɤ ɟɟ
ɬɟɦɩɟɪɚɬɭɪɧɨɣ ɡɚɜɢɫɢɦɨɫɬɢ
.
Ⱦɚɥɟɟ
,
ɩɨɞɨɛɪɚɜ ɩɨ ɦɟɬɨɞɭ ɧɚɢɦɟɧɶɲɢɯ
ɤɜɚɞɪɚɬɨɜ ɧɚɢɛɨɥɟɟ ɬɨɱɧɵɣ ɜɢɞ ɪɟɝɪɟɫɫɢɢ
,
ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɜɟɥɢɱɢɧɭ
ɩɨɤɚɡɚɬɟɥɹ ɫɬɟɩɟɧɢ
p
ɢ ɬɟɦ ɫɚɦɵɦ ɭɫɬɚɧɨɜɢɬɶ ɦɟɯɚɧɢɡɦ ɪɚɫɫɟɹɧɢɹ
ɫɜɨɛɨɞɧɵɯ ɧɨɫɢɬɟɥɟɣ ɡɚɪɹɞɚ
.
5.2.3.
ɂɡɦɟɪɟɧɢɟ ɬɟɪɦɨ
-
ɷ
.
ɞ
.
ɫ
.
ɉɪɢ ɧɚɥɢɱɢɢ ɝɪɚɞɢɟɧɬɚ ɬɟɦɩɟɪɚɬɭɪɵ
'
Ɍ
ɜ ɪɚɡɥɢɱɧɵɯ ɱɚɫɬɹɯ
ɩɨɥɭɩɪɨɜɨɞɧɢɤɚ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɧɨɫɢɬɟɥɟɣ ɩɨ ɫɤɨɪɨɫɬɹɦ ɢɦɟɟɬ ɪɚɡɥɢɱɧɵɣ
ɜɢɞ
.
ȼɫɥɟɞɫɬɜɢɟ ɷɬɨɝɨ ɜ ɩɨɥɭɩɪɨɜɨɞɧɢɤɟ ɩɪɢ ɨɬɫɭɬɫɬɜɢɢ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ
ɩɨɥɹ ɜɨɡɧɢɤɚɟɬ ɦɚɤɪɨɫɤɨɩɢɱɟɫɤɢɣ ɩɨɬɨɤ ɧɨɫɢɬɟɥɟɣ
,
ɬɚɤ ɱɬɨ ɝɪɚɞɢɟɧɬ
ɬɟɦɩɟɪɚɬɭɪɵ ɢɝɪɚɟɬ ɪɨɥɶ ɷɮɮɟɤɬɢɜɧɨɝɨ ɬɟɩɥɨɜɨɝɨ ɩɨɥɹ
,
ɜ ɧɟɤɨɬɨɪɨɣ
ɫɬɟɩɟɧɢ ɚɧɚɥɨɝɢɱɧɨɝɨ ɷɥɟɤɬɪɢɱɟɫɤɨɦɭ ɩɨɥɸ
.
ȿɫɥɢ ɰɟɩɶ ɪɚɡɨɦɤɧɭɬɚ
,
ɢ ɬɨɤ
ɜ ɧɟɣ ɨɬɫɭɬɫɬɜɭɟɬ
,
ɜ ɤɚɠɞɨɣ ɬɨɱɤɟ ɨɛɪɚɡɰɚ ɢɦɟɟɬɫɹ ɷɥɟɤɬɪɢɱɟɫɤɨɟ ɩɨɥɟ
,
ɨɩɪɟɞɟɥɹɟɦɨɟ ɢɡ ɭɫɥɨɜɢɹ
,
ɱɬɨ ɬɟɩɥɨɜɨɣ ɬɨɤ ɭɪɚɜɧɨɜɟɲɢɜɚɟɬɫɹ ɨɦɢɱɟɫɤɢɦ
.
Ȼɥɚɝɨɞɚɪɹ
ɧɚɥɢɱɢɸ
ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ
ɩɨɥɹ
ɜ
ɰɟɩɢ
ɜɨɡɧɢɤɚɟɬ
ɬɟɪɦɨɷɥɟɤɬɪɨɞɜɢɠɭɳɚɹ ɫɢɥɚ
(
ɬɟɪɦɨ
-
ɷ
.
ɞ
.
ɫ
.),
ɢɥɢ ɷɮɮɟɤɬ Ɂɟɟɛɟɤɚ
.
ɉɪɢ ɷɬɨɦ
60