ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 24.05.2021

Просмотров: 464

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
  1. Пространство Rn.

Функции многих переменных:

Множ-во всех упорядоченных наборов х, с координатами х(x1, x2, … xn) из n-веществен. чисел хiR для всех n € 1;n назыв. n-мерным арифметическим пространством, обознач. Rn Каждая совокупность х назыв точкой или вектором пространства Rn а число хi-назыв её I координат

Операция сложения и умножения элемента на число вводится как координатное сложение элементов и как умножение каждой координаты на данное число.

Определение Пространство Rn назыв нормированным, если каждому х€ Rn ставится в соответствии неотриц число обозначаемое для всех х€ Rn - ||x|| назыв нормой х и удовлетворяет следующим свойствам

    1. ||x||=0↔x=0

    2. ||cx||=||c|| ||x|| для всех с€R

    3. ||x+y||= ||x||+||y|| для всех х+у€ Rn

Евклидово пространство

- или евклидова норма.


  1. Сходимость последовательности в Rn.

n} для всех nNxkxkRn

{xk}={x1,x2,…xk..}

{xk}={1/n}={1;1/2;1/3…1/n…}

Если каждому натуральному nN поставлено в соответствии хк€Rn,то говорят,что задана посл-ть эл-тов в Rn.

Посл-ть хк назыв. Сходящейся к последовательности к эл-ту х0€Rn,если числовая посл-ть стремится к 0.{||xkx0||}→0,т. Е. если для любого ε>0 сущ kn=k0 (ε)€ N для любого k>k0 : ||xkx0||<ε.

{xk}→x0 при k→∞ limxk=x0 при k →∞

Замечание.При определении сходимости постед. Не имеет значение способ определения нормы.

Теорема.Сходимость по норме эквивалента по координатной сходимости, т.е. limxk=x0 при k →∞ ↔ limxki=x0 iпри k →∞ для любого i=1;n

Замчание 2. С помощью перехода к координатной сходимости доказыв св-ва сходящ посл-тей: 1)о пределе суммы или разности 2х сход посл-тей; 2)о сходимости произведения сход посл-ти из Rm и сходящейся числовой посл-ти.+


  1. Открытые,замкнутые.компактные мн-ва Rn.

Открытым шаром с центром в точке х0 и рарадиусом δ (иии δ–окрестностью точки х0) назыв мн-ва х€Rn такие,что ||х-х0||<δ= В(х0,δ)

Пусть мн-во Gсодержит Rn точка х0-внутр точка мн-ва G,если она содержится в мн-ве G вместе с некоторым открытым шаром.

Мн-во G назыв открытым,если все его точки внутренние.

Точка х0 назыв предельной точкой мн-ва G,если любая δ-окрестность в этой точке содержит точки мн-ва G, отличные от х0.

[Т] Если х0-предельная точка мн-ва G,то сущ посл-ть хк такая,что хк€G,хк≠х0 и сходится к х0.

Мн-во G замкнуто,если оно содержит все свои предельные точки.

Замечание. Св-ва откр и замкнутых мн-в формулируются аналогично случаю пространства Rn.

Огранич и замкнутое мн-во назыв компактным.

[Т] Если К-компактное мн-во,это эквивалентно тому,что из любой посл-ти {xk} можно выделить сходящ посл-ть,которая сходится к х0€К.


  1. Понятие функции N переменный. Предел функции N переменных.

Ф-ии нескольких(многих) пер-ных,заданных на мн-ве G<Rn, назыв правтло или закон,согласно которому в каждой точке х€Rn ставится в соотвествии единственное число uR’.

U=f(x)=x вектор=f(x1;x2;…xn)

G-область опр-ния,{u;u=f(x),xR}-область значения.

По Гейне. Число b называют пределом функции f(M) в точке А (при МА), если для любой последовательности точек {Mn} из множества {M}, сходящейся к точке А (Mn Отлична от А), соответствующая последовательность значений функции {f(Mn)} сходится к b.


По Коши: Число b называется пределом функии f(M) в точке А, если для любого числа >0 можно найти такое число >0, что для всех точек М множества {M} из -окрестности точки А (удовлетворяющих неравенству р(М,А)<) выполняется неравенство |f(M)-b|<

Замечание. Также,как и в случае одной переменной,доказывается эквивалентность опр-ния предела по Коши и по Гейне,а также св-ва пределов,связанные с арифметич действиями.

[T] Пусть две функции f(M) и g(M) определенные на одном множестве {M}, имеют соответственно пределы b и с в точке А. Тогда функции f(M)g(M), f(M)g(M) и f(M)\g(M) (при с0) имеют пределы в точке А, равные соответственно bc, bc и b\c.

Замечание2.Опр-е не зависит от выбора нормы Rn.

Замечание3. Аналогично случаю ф-ии одной переменной определяется в точке х0 справа и слева и пределы на ∞.

Ф-ия f(x) назыв непрерывной в точке х0€G,если limf(x)=f(x0) при х→х0,т.е.

Функция u=f(M) называется б-м в точке А, если ее предел в ней равен 0

Функция u=f(M) называется б-б в точке А, если ее предел в ней бесконечен

Непрерывность функции N переменных.

Непрерывность функции нескольких переменных

1)Пусть функция u=f(M) определена на множестве {M} н-мерного евклидова пространства. Возьмем точку А{M}, любая -окрестность которой содержит точки множества М.

2)Функция u=f(M) называется непрерывной в точке А, если предел функции в этой точке равен значению функции в этой точке

Следствие: для непрерывных функций знак предела и функции можно поменять местами.

3)Непрерывность функции по Гейне: Функция u=f(M) называется непрерывной в т. А, если для любой последовательности {Mn} сходящейся к А, соответствующая ей последовательность {f(Mn)} сходится к f(A)

4) Функция u=f(M) называется непрерывной в точке K, если для любого >0 найдется отвечающее ему положительное число , такое что для всех M принадлежащих {M}, удовлетворяющих условию р(М,А)< выполняется неравенство |f(М)-f(А)|<

5)Функция u=f(M) непрерывна на множестве {M} если она непрерывна в каждой точке этого множества.

Точки н-мерного евклидово пространства для которых функция u=f(M) не обладает свойством непрерывности называются точками разрыва этой функции.

Приращением или полным приращением функции u=f(M) в точке А называется разность u=f(M)-f(A)

Функция u=f(M) называется непрерывной в точке А, если ее приращение в этой точке является бесконечно малой функцией при M->0.

Непрерывность функции n-переменных по одной из переменных при фиксированных значениях остальных переменных.

Рассмотрим частное приращение функции в точке М (X1,X2,..Xn)

Зафиксируем все переменные этой функции, кроме одной, аргументу X1 дадим приращение x1, имеем:

u=f(x1+x1, x2+x2,…Xn)-f(x1, x2,…Xn)

U=f(x1, x2,…xn)

x1U=f(x1+x1, …xn)-f(x1, x2,…Xn)

Причем x1 М’(x1+x1,…xn){M

Аналогично выводится частное приращение функции по остальным переменным

хnU=f(X1,x2, …, Xn-1, Xn+ xn)-F(x1, x2,…Xn)

Функция u=f(x1,x2,…xn) называется непрерывной в т М(x1, x2, …xn) по переменной Хк, если частное приращение этой функции хкU является б-м функцией при хк->0


Для непрерывных функций справедливые теоремы аналогичные теоремам о непрерывных функциях одной переменной:

  1. функций Пусть функции f(M) и g(M) непрерывны на одном и том же множестве {M}

Тогда функции f(M)g(M), f(M)*g(M) и f(M)\g(M) также непрерывна в точке F

(частное при g(A))

Также справедливы:

  1. теорема об устойчивости знака непрерывной функции

  2. 2 теорема Больцано-Коши о прохождении любой непрерывной функции через промежуточ-

ное значение

  1. 1 и 2 торемы Вейерштраса.





  1. Частные производные функции N переменных.

Рассмотрим функцию u=f(x1, x2,…xn), заданную на множестве {M}. И пусть точка М(x1, x2, …, xn) внутрення точка области определения множества М

Рассмотрим в данной фиксированной точке М отношения частного приращения функции (Хк0) Оно должно быть таким, чтобы вновь полученная т.М с координатами (х1, …Хк-1, Хк+Хn,Xn+1 ….Хn) принадлежала множеству М.

Существует (1)

D'ef Если существует предел (1) частных приращений функции функции u=f(x1, x2,…xn) в точке М с координатами (х1, х2, ….хn) по переменной Хк к соответствующему приращению Хк аргумента Хк при Хк -> 0, то этот предел называется частной производной функции в т.М по аргументу Хк и обозначается одним из следующих символов: .

Замечание. Частная производная представляет собой обычную производную функции. Одной переменной Хк при фиксированных значениях остальных переменных.

  1. Дифференцируемость функции N переменных.

Ф-ия u=f(x) назыв диффер в точке х0,если ее полное приращение в данной точке можно представить в виде ∆u=А1*∆х2+А2*∆х2+…+Аn*∆хn+α(∆х2)*∆х2+…+α(∆хn)*∆хn – ω(х0;∆х),где Аi-некоторые числа,не зависящие от ∆хi.

Перепишем ф-лу: ∆u=A1*∆x1+A2*∆x2+…+An*∆xn+ω(x0;∆x) (2)

|ω(x0;∆x)|/||∆x|| стремится к 0 при ||∆x||→0.

Ф-ия дифференцируема в каждой точке (x1, x2,…,xn),диффер на(x1, x2,…,xn).

[T] Если u=f(x1,x2,x3,…,xn) дифференцируема в точке M(x1, x2,…,xn), то существуют частные производные данной функции по всем переменным, причем , где I= . Доказательство: из условий дифференцируемости функции запишем: xiU=AiXi+iXi, I= . Найдем предел :

Следствия:

  • условие дифференцируемости функции в точке М можно записать в виде: xkU= (5)

  • если u=f(x1,x2,x3…xn) дифференцируема в точке М, то ее представление приращение в форме (2) единственно. Док-во: В ф-ле (2) коэф-ты ∂u/∂xi опр единственным образом(по опр-нию частных произодных).

[Т2] Если u=f(x) диф в точке х0,то она непрер в точке х0. Док-во: limu=0+0=0 при ∆x→0 и ∆хi→0 по опр-нию непрерывности ф-ии,что и т.д.

Замечание. Теорема,обратная теореме 1,не верна.

[Т3] Достаточное условие дифференцируемости функции: Если функция u=f(x1, x2,…,xn) имеет частные производные по всем переменным в некоторой окрестности точки М причем все частные производные непрерывны в самой точке Мо, то указанная функция дифференцируема в этой точке.

Функция u=f(x1,…xn) называется дифференцируемой в т М(x1, x2, …xn), если ее полное приращение представлено в виде


(2)u=A1x1+A2x2+….+AnXn +1x1+…nxn, где А1, А2, …, Аn некоторые числа, не зависящие от X1,X2….X числа, а 1, 2, …m б-м функции соответственно при х1->0, х2->0, …хm->0 Условие называется условием дифференцируемости функции в данной точке М евклидова пространства Еm

Соотношение (2)называется условием дифференцируемости функции, причем 1=2….n=0, при Х1=Х2=Х3…Хn=0 можно записать следующим образом: u=А1 Х1+ А2 Х2)+…+ Аn Хn

Ф-ия,имеющая в точке х0 непрерывные частные произв-ые,назыв непрерыв диф в точке х0.

  1. Дифференциал функции N переменных.

Дифференциалом du дифференцируемой в точке М(х1,х2,…,хn) функции u=f(x1,x2,…,xn) называется главное линейное относительно приращения аргумента часть приращения этой функции в точке М.

Если все коэффициенты Ai=0, то дифференциал функции в точке М считается равным 0.

Как и в случае 1 перем-ой будем считать,что дифференциал от независимой переменной совпадает с ее приращением,т.е. d'xi=i= . du= (*)

Замечание1. Ф-ла (*) выписана для случая,когда пргументы хi явл независ переменными.Далее будет доказано,что ф-ла справедлива и в случае,когда хi-зависимые переменные (это св-во назыв инвариантность формы первого диффер-ла).

Замечание2. Геометр смысл диф-ла 2х переменных. (рис.)


  1. Дифференцирование сложной функции.

Рассмотрим вопрос о дифференцировании сложной функции нескольких переменных вида:

U=f(M)=f(X1,x2,…xn) (1)

Xi=i(t1,t2,…,tk), I=1,2,…m (2)

[T] Пусть функция (2) дифференцируема в некоторой точке Nо ( , а функция (1) дифференцируема в точке Мо( , причем Тогда сложная функция u=f(x1,x2,…,xn), где Х1,Х2,…,Хn определяется по формулам (2) дифференцируема в точке Мо, при этом частные производные этой сложной функции вычисляются по формулам:

.

в которых берутся в точке Mо, а частные производные берутся в точке Nо.

Следствие: Случай,когда ф-ла (2) зависит только от t1 хii(t),поэтому ф-ла примет вид


  1. Неявные функции.

D'ef Если переменная u, являющаяся по смыслу функцией переменных х1,х2,…,хn задается посредством функций уравнений F(U,X1,x2,…,xn)=0, то говорят, что функция задана неявно.

Частные производные неявно заданной функции вычисляются по формулам:

d'u/d'xi=-(d'F/d'xi)/(d'F/d'u), i=1,...,n

Рассмотрим совокупность М неявных функций, которые задаются посредством системы М функциональных уравнений:

/u1=ф1(х1,х2,...,хn)

/u2=ф2(х1,х2,...,хn) (1)

\...

\um=фm(х1,х2,...,хn)

Пусть функции определены, как решение М функциональных уравнений (2)

(2)

/F1(u1,...,um,x1,...xn)=0

/F1(u1,...,um,x1,...xn)=0 (2)

\...

\F1(u1,...,um,x1,...xn)=0

Решением системы (2) будет называться совокупность функций, таких что при их подстановки в систему все уравнения этой системы образуются в тождества.

D'ef Это решение будем называть непрерывным и дифференцируемом в некоторой области D' изменения переменных Х1,Х2,…Хn Если каждая из функций U1,U2,…Um непрерывна и дифференцируема в этой области.

ld'F1/d'u1, d'F1/d'u2,..., d'F1/d'un l

ld'F2/d'u1, d'F2/d'u2,..., d'F2/d'un l = D'(F1,F2,...,Fn)\D'(u1,u2,...,un)


l... l

ld'Fm/d'u1, d'Fm/d'u2,..., d'Fm/d'unl

Такой определитель называют определителем Якоби или Якобианом.

[T] Система (2) будет разрешима, а решение непрерывно и дифференцируемо, если функция f1,f2,…,fn дифференцируема в окрестности точки Мо, d'Fi/d'ui непрерывна в точке Мо, D'(F1,F2,...,Fn)\D'(u1,u2,...,un)

Якобиан отличен от 0 и F1=F2=…=Fn в точке Мо


  1. Производная по направлению. Градиент.


Рассмотрим функцию трех переменных u=f(x,y,z). Пусть она определена в некоторой окрестности точки Мо(хо,yo,zo). Рассмотрим всевозможные лучи, выходящие из точки Мо. Каждый такой луч заадется единственным вектором (соs, cos,cos). Если l- длина этого отрезка, то его координаты (lcos, lcos, lcos) C другой стороны: (x-xo, y-yo, z-zo)

Т.о. получили один и тот же отрезок:

Приравняем

u=f(Xo+lcos, Yo+lcos, Zo+lcos) (1)

Т.о. u- сложная функция.

Производную указанной сложной функции по переменной l, взятую в точке l=0 нназывают производной функции u=f(x,y,z) в точке Мо по направлению, оопределяемому единичным вектором l. Обозначение:

(2)

Градиентом функции u=f(x,y,z) в данной точке Мо(xo,yo,zo) называется вектор, координаты которого имеют вид gradu(Mo)=

Если: u=f(x1,x2,…,xn) Mo(

[Т] Вектор градиента функции y=f(x,y,z) в точке Мо характеризует направление и величину максимального роста функции в точке Мо,т.е. производные функции u=f(x,y,z) в точке Мо по направлению, определенному вектором градиента этой функции в точке Мо имеет максимальное значение по сравнению с производной по любому другому направлению и это значение равно длине вектора градиента.

Док-во: Из ф-л (1) и(2) →(gradu,e) =∂u/∂e

u/∂e=(gradu,e) = |gradu|*|e|*cosφ

Cosφ=1 φ=0

Max значение достигается ↔ вектор е и вектор grad направлены одинаково. Тогда |∂u/∂e=gradu|

Следствие. Вектор градиента не зависит от выбора координат.

Геометрический смысл градиента:

Линии уровня для функции двух переменных u=f(x,y) называется линия на которой функция сохраняет свое постоянное значение.

Если В каждой точке линии уровня M(xо,yо) построить касательную, то вектор-градиент в точке Мо будет перпендикулярен этой касательной.

Поверхность уровня- фунция u=f(x,y,z) в точке Мо (xo,yo,zo) называется поверхность на которой функция сохраняет свое постоянное значение.

Свойства: если в каждой точке Mo(xo,yo,zo) провести касательную поверхность, то вектор градиент будет ортогонален этой поверхности.


  1. Частные производные высших порядков функции N переменных.

Пусть u=f(x) диф в окрестной точке х0,значит в окр точке сущ. частные производные Пусть частные производные сущ. в каждой точке области Du/∂xi=di=1,n, если она сущ в каждой обл D то её можно рассматривать как некоторую функцию нескольких переменных, заданных на обл D следовательно у неё существуеют частные производные d'u/d'xi, i=1,...,n: d'/d'xk(d'u/d'xi)=d^2u/(d'xid'xk)

Частная производная взятая от d'u/d'xi, i=1,...,n по переменной Хк называется частной производной второго порядка и обозначается d'^2u/d'xid'xk, i=1,...,n шне равно к, если I=k, то она обозначается как d'^2u/d'xi^2