Файл: 1 Вопрос. Основные химические понятия атом, молекула, химический элемент, относительные атомные и молекулярные массы.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 30.10.2023
Просмотров: 282
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
рН + рОН = 14.
Таким образом, зная рОН , можно легко рассчитать рН, и наоборот, по известному значению рН легко определяется рОН.
Величина рН может служить критерием силы кислоты или основания. В ряду кислот наиболее сильной будет та, у которой при одинаковой молярной концентрации, концентрация ионов Н+ выше (рН ниже).
Водородный показатель имеет важное значение для жизнедеятельности организма, так в норме рН сыворотки крови равен 7,40, слюны – 6,35 - 6,85, желудочного сока 0,9 – 1,1. Отклонение рН от нормальных значений приводит к расстройству деятельности организма.
26 Равновесие в насыщенных растворах малорастворимых электролитов. Произведение растворимости. Условия образования и растворения осадков.
ПР-величина,постоянная для данной соли при данной температуре в насыщенном растворе. Она равна произведению концентраций ионов.
В насыщенном растворе существует равновесие между веществом в осадке и его ионами в растворе.
В ненасыщ.растворе произведение концентраций ионов меньше ПР
В табличной величине ПР недостигнуто.
Для того,чтобы в ненасыщ. Растворе (НП, CaSO4) выпал осадок, надо увеличить произведение концентраций, добавив какой-нибудь из ионов (Ca^2+ или SO4^2-), тогда произв.конц. возрастёт, станет равным ПР, раствор станет насыщенным ,выпадет осадок.
Чтобы растворить осадок,надо уменьшить произв.конц., связав хотя бы 1 из его ионов (Нп,в комплексное соединение (соед.,которое «прячет» ион)) Произв.конц уменьшится,станет меньше ПР,раствор станет ненасыщ.осадок растворится.
| | Поскольку абсолютно нерастворимых веществ нет, какая - то часть AgCl перейдёт в раствор. Поскольку AgCl - сильный электролит, все молекулы, перешедшие в раствор, диссоциируют на ионы, и в растворе будут находится ионы. |
27 Реакции в растворах электролитов. Направленность обменных реакций в растворах электролитов.
По направлению протекания процесса реакции подразделяются на необратимые, которые протекают только в прямом направлении и завершаются полным превращением реагентов в продукты:
AgNO3 + NaCl = AgCl + NaNO3,
Na2CO3 + 2HCl = 2NaCl + CO2 + H2O
и обратимые реакции, которые протекают одновременно в прямом и обратном направлениях, при этом реагенты превращаются в продукты лишь частично (т. е. реакции не идут до конца слева направо) :
CH3COONa + H2O <-> CH3COOH + NaOH
Необратимость химической реакции подчёркивается в уравнении знаком равенства (=) между формулами реагентов и формулами продуктов, а обратимость реакции – специальным знаком – противоположно направленными стрелками.
Направленность реакций в растворах электролитов может определяться удалением продукта реакции из раствора (например, при осаждении одного из продуктов реакции или выходе газообразного продукта) , а также при изменении условий протекания реакции (температуры, давления и т. д.) .
Реакции между ионами в растворах электролитов идут практически до конца в сторону образования осадков, газов и слабых электролитов.
Следовательно, реакции идут с образованием веществ с меньшей концентрацией ионов в растворе в соответствии с законом действующих масс. Скорость прямой реакции пропорциональна произведению концентраций ионов реагирующих компонентов, а скорость обратной реакции пропорциональна произведению концентраций ионов продуктов. Но при образовании газов, осадков и слабых электролитов ионы связываются (уходят из раствора) и скорость обратной реакции уменьшается.
28 Реакции гидролиза. Различные случаи гидролиза солей.
Гидролиз (в переводе разложение водой) – процесс взаимод ионов соли с ионами воды, в рез-те кот образуется слабый электролит, что сопровождается связыванием одного из ионов воды, смещением равновесия диссоциации воды и изменением рН раствора. Различают зидролиз по катиону и аниону. 1)Если соль образована катионом слабого основания и анионом сильной кислоты, то гидролиз идет по катиону c образованием ионов Н+. Если катион многозарядный, то гидролиз протекает по первой стадии с образованием соли. CuCl2+HOH«CuOHCl+HCl, CuOHCl+HOH«Cu(OH)2. Накопление ионов Н+ приводит к уменьшению ионов ОН-. Кислая реакция среды. 2) Если соль образована катионом сильного основания и анионом слабой кислоты, то гидролиз идет по аниону, приводит к связыванию ионов Н+, накапление ОН-, среда реакции нщелочная. Если анион соли многозарядный, то гидролиз идет по первой стадии с образов кислой соли. Na2CO3+HOH«NaHCO3+NaOH, NaHCO3+HOH«H2CO3+NaOH. 3)Если соль образована катионом слабого основания и анионом слабой кислоты, то гидролиз идет по катиону и аниону. Реакция среды зависит от относит силы образ-ся кислоты и основания. NH4CN+HOH«NH4OH+HCN. 4)Если соль образована слабым многокислотным основанием и слабой многоосновной кислотой, то гидролиз идет до конца и практически необратим. В рез-те образуется осадок и выделяется газ. 5)Если соль образована сильным основанием и сильной кислотой, гидролиз не идет.KCl+HOH®гидролиз не идет. нейтрализация в этом случае сводится к процессу Н++ОН-= Н2О а обратная реакция-диссоциация молекулы воды на ионы - протекает в ничтожно малой степени. реакция среды нейтральная.
29 Гидролиз солей. Константа и степень гидролиза
В общем случае, гидролиз солей – это процесс обменного разложения воды и растворенной в ней соли – электролита, приводящий к образованию малодиссоциирующего вещества.
Гидролиз является частным случаем сольволиза – обменного разложения растворенного вещества и растворителя.
Характеризовать гидролиз количественно позволяют такие величины, как Степень гидролиза и константа гидролиза.
Степень гидролиза
— это соотношение количества подвергающейся гидролизу соли nгидр и общего количества растворенной соли nобщ. Обычно, ее обозначают через hгидр(или α ):
hгидр = (nидр/nобщ)·100 %
Величина hгидр увеличивается с уменьшением силы образующих соль кислоты или основания.
Константа гидролиза
Представим в общем виде процесс гидролиза соли, в котором в роли соли выступает – МА, а НА и МОН — соответственно, кислота и основание, которые образуют данную соль:
MA + H2O ↔ HA + MOH
Применив закон действующих масс, запишем константу, соответствующую этому равновесию:
K = [HA]·[MOH]/[MA]·[H2O]
Известно, что концентрация воды в разбавленных растворах, имеет практически постоянное значение, поэтому ее можно включить в константу
K·[H2O]= Kг,
тогда для константы гидролиза соли Kг будет иметь такой вид:
Kг = [HA]·[MOH]/[MA]
По величине константы гидролиза можно судить о полноте гидролиза: чем больше ее значение, тем в большей мере протекает гидролиз.
Константа и степень гидролиза связаны соотношением:
Kг = С·h2/(1-h), моль/л
Где С – концентрация соли в растворе, h-степень гидролиза
Это выражение можно упростить, т.к. обычно h˂˂1,тогда
Kг = С·h2
Зная, константу гидролиза, можно определить pH среды:
Kг = [HA]·[MOH]/[MA]
Концентрация образовавшейся кислоты равна концентрации гидроксид ионов, тогда
Kг = [OH—]2/[MA]
Используя это выражение можно вычислить pH раствора
[OH—] = (Kг·[MA])1/2 моль/л
[H+] = 10-14/[OH—] моль/л
pH = -lg[H+]
30 Природа и классификация дисперсных систем. Основные признаки коллоидного состояния
Дисперсная система (ДС) – это система, в которой хотя бы одно вещество находится в раздробленном состоянии.
ДС имеет два характерных признака: гетерогенность и дисперсность. Гетерогенность означает, что система состоит как минимум из двух фаз.
Особенность ДС состоит в том, что одна из фаз обязательно должна быть раздробленной
, ее называют дисперсной фазой. Сплошная среда, в которой раздроблена дисперсная фаза, называется дисперсионной средой
Характерным свойством ДС является наличие большой межфазной поверхности. В связи с этим определяющими являются свойства поверхности, а не частиц в целом. Характерными являются процессы, протекающие на поверхности, а не внутри фазы.
Коллоидная химия – это наука о поверхностных явлениях и физико-химических свойствах дисперсных систем (рис. 1.1).
Классификация ДС может быть проведена на основе различных свойств.
Классификация по дисперсности
Рис. 1.2.
Зависимость величины удельной поверхности от размеров частиц
Зависимость величины удельной поверхности от дисперсности графически выражается равносторонней гиперболой (рис.1.2).
Из графика видно, что с уменьшением поперечных размеров частиц величина удельной поверхности существенно возрастает. Если кубик с размером ребра 1 см измельчить до кубических частиц с размерами см, величина общей межфазной поверхности возрастет с 6 см2 до 600 м2.
При см гипербола обрывается, так как частицы уменьшаются до размеров отдельных молекул, и гетерогенная система становится гомогенной, в которой межфазная поверхность отсутствует. По степени дисперсности ДС делятся на:
-
грубодисперсные системы, см; -
микрогетерогенные системы, см; -
коллоидно-дисперсные системы или коллоидные растворы, см; -
истинные растворы, см.
Необходимо подчеркнуть, что самую большую удельную поверхность имеют частицы дисперсной фазы в коллоидных растворах.
Классификация по агрегатному состоянию фаз
Классификация по агрегатному состоянию фаз была предложена Вольфгангом Оствальдом. В принципе возможно 9 комбинаций.