Файл: Билет 1 1 Фазы сплавов твердые растворы и промежуточные фазы. Влияние состава на свойства твердых растворов. Промежуточные фазы постоянного и переменного составов, их строение и свойства (фазы внедрения, карбиды, нитриды, электронные соединения и т д.).docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 08.11.2023
Просмотров: 87
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Билет 1 1 Фазы сплавов: твердые растворы и промежуточные фазы. Влияние состава на свойства твердых растворов. Промежуточные фазы постоянного и переменного составов, их строение и свойства (фазы внедрения, карбиды, нитриды, электронные соединения и т.д.). 1. Сплав – вещество, содержащее в своем составе два или более компонентов, по крайней мере один из которых – металл. Получают их с помощью спекания или сплавлением. Компонент – вещество, образующее сплав. Фаза – пространственно ограниченная и отличная от других часть системы, имеющая свою кристаллическую решётку и свои свойства. Гомогенные вещества имеют одну фазу, а гетерогенные – несколько фаз. Структура – строение металла, в котором можно различать отдельные фазы, их форму, размеры и взаимное расположение. Структура влияет на свойства. Равновесное состояние – когда в сплаве все фазы, присущие этой системе оформлены. Это состояние обеспечивается при медленном охлаждении, можно различать размеры и формы фаз. Неравновесное состояние – процесс образования и обособления фаз не закончился, образуется при быстром охлаждении. Компонент – химическое вещество, входящее в состав сплава. В дальнейшем будем рассматривать двойные сплавы. Различные типы кристаллических сплавов. 1. Твердые растворы – кристаллы, у которых один из компонентов образует собственную кристаллическую решетку, а второй присутствует в виде отдельных атомов, то есть собственной кристаллической решетки не имеет. Первый компонент называют растворителем, а второй – растворенным компонентом. Выделяют твердые растворы внедрения и твердые растворы замещения. В твердых растворах внедрения – атомы растворенного вещества находятся в межатомных промежутках растворителя. Особенности:
В твердых растворах замещения – атомы растворенного вещества замещают атомы растворителя в узлах кристаллической решетки. Особенности
Билет 3 1. Диаграммы состояния двойных сплавов. Правило концентраций и отрезков. Использование диаграмм состояния для определения свойств сплавов и возможных видов их термической обработки. Так как вид диаграммы, также как и свойства сплава, зависит от того, какие соединения или какие фазы образовали компоненты сплава, то между ними должна существовать определенная связь: правило Курнакова.
4. При образовании химических соединений концентрация химического соединения отвечает максимуму на кривой. Эта точка перелома, соответствующая химическому соединению, называется сингулярной точкой Билет 5 1.Диаграмма Fe-Fe3C, ее фазовый и структурный анализ. Влияние углерода на структуру и свойства сталей. Диаграмма состояния «Железо – цементит». Превращения в сплавах на основе железа при нагреве и охлаждении. Feα от низких температур до 768°C, эта фаза имеет решётку о.ц.к., низкую прочность и твёрдость 80 HB, низкий предел текучести, удельный вес 7,8 г/см3, имеет магнитные свойства (ферромагнетик), растворяет углерод 0,006% при 20°C и 0,02% при 727°C. Твёрдый раствор углерода в Feα наз. феррит. Свойства феррита близки к свойствам чистого Fe. Feβ – о.ц.к., существует от 768°C до 910°C, растворяет углерод в небольших к оличествах, немагнитен, при 768°C теряет магнетизм, 768°C – точка Кюри, парамагнетик. В 910-1400°C существует Feγ, решётка г.ц.к., это железо немагнитно, растворяет 2,14% C при 1147°C. Раствор углерода в Feγ наз. аустенит, немагнитен, твёрже феррита, достаточно пластичен. Feδ существует в 1400-1539°C. 1539°C – плавление Fe. Переход Feα→Feγ происходит с изменением объёма (1%) (у α больше V). Fe3C - 6,7% C, твёрдость 800 HB, Fe3C – цементит, при низких температурах магнитен. Fe3C→Fe+ Графит. При 1147°C идёт реакция, в результате которой образуется эвтектика: смесь аустенита и цементита – ледебурит. [А+Ц] - 4,3% C. Феррит+цементит – Перлит. [Ф+Ц] – 0,8% C, твёрдость HB 800. Ла – [А+Ц], Лп – [П+Ц], А→П. Из жидкости выделяется ЦI, из А - ЦII, из Ф - ЦIII. До 2,14% C – стали, после – чугуны. Сначала жидкость переходит в аустенит, потом происходит переход жидкости в ледебурит аустенитовый (эвтектическая реакция), аустенит переходит в перлит (эвтектоидная реакция), аустенит переходит в феррит. Билет 7 1. Элементарная ячейка кристаллической решетки и ее характеристики. Полиморфизм, анизотропия, их использование в технике. Кристаллическое тело характеризуется правильным расположением атомов в пространстве. У аморфных веществ расположение атомов случайно. Кристаллические вещества образуют кристаллическую решётку. 14 типов кристаллических решёток. Крист. решётка характеризуется элементарной ячейкой. Эл. ячейка – кристаллич. решётка наименьшего объёма, воспроизведение которой в пространстве множество раз создаёт пространственную крист. решётку. Атомы в пространстве располагаются упорядоченно, образуя кристаллическую решётку. Основные типы: 1. Простая кубическая решётка: в узлах кубика атомы касаются друг друга. Параметры: Период решётки (расстояние между атомами a =d), d – диаметр атома. 1/8·8 =1 атом на элемент, ячейку. Для химического соединения данный тип решётки. 2. Кубическая объёмно-центрированная решётка характерна для тугоплавких металлов. a =1,21·d. 1/8·8 +1 =2. Feα, Ti, W, Nb. 3. Кубическая гранецентрированная решётка . 1/8·8 +1/2·6 =4. Характерна для пластичных металлов. Cu, Feγ, Au. 3. Анизотропия кристалла и изотропия кристаллических тел. Анизотропия – это различие свойств в разных направлениях в кристалле. В монокристалле – анизотропия. Поликристаллические вещества – где много кристаллов. В поликристаллическом теле – изотропия (одинаковые свойства по разным направлениям). Билет 9 1. Закалка сталей. Оптимальная температура закалки углеродистых сталей. Влияние легирующих элементов на критическую скорость закалки. Внутренние напряжения в закаленных сталях. Закалка Конструкционные стали подвергают закалке и отпуску для повышения прочности и твердости, получения высокой пластичности, вязкости и высокой износостойкости, а инструментальные – для повышения твердости и износостойкости. Основными параметрами являются температура нагрева и скорость охлаждения. Продолжительность нагрева зависит от нагревательного устройства, по опытным данным на 1 мм сечения затрачивается: в электрической печи – 1,5…2 мин.; в пламенной печи – 1 мин.; в соляной ванне – 0,5 мин.; в свинцовой ванне – 0,1…0,15 мин. По температуре нагрева различают виды закалки: – полная, с температурой нагрева на 30…50oС выше критической температуры А3 . Применяют ее для доэвтектоидных сталей. Изменения структуры стали при нагреве и охлаждении происходят по схеме: . Неполная закалка доэвтектоидных сталей недопустима, так как в структуре остается мягкий феррит. Изменения структуры стали при нагреве и охлаждении происходят по схеме: – неполная с температурой нагрева на 30…50 oС выше критической температуры А1 Применяется для заэвтектоидных сталей. Изменения структуры стали при нагреве и охлаждении происходят по схеме: . После полной закалки заэвтектоидных сталей получают дефектную структуру грубоигольчатого мартенсита. Заэвтектоидные стали перед закалкой обязательно подвергают отжигу – сфероидизации, чтобы цементит имел зернистую форму. Охлаждение при закалке. Для получения требуемой структуры изделия охлаждают с различной скоростью, которая в большой степени определяется охлаждающей средой, формой изделия и теплопроводностью стали. Режим охлаждения должен исключить возникновение больших закалочных напряжений. При высоких скоростях охлаждения при закалке возникают внутренние напряжения, которые могут привести к короблению и растрескиванию. Внутренние напряжения, уравновешиваемые в пределах макроскопических частей тела, называются напряжениями I рода. Они ответственны за искажение формы (коробление) и образование трещин при термообработке. Причинами возникновения напряжений являются:
Закаливаемость – способность стали приобретать высокую твердость при закалке. Закаливаемость определяется содержанием углерода. Стали с содержанием углерода менее 0,20 % не закаливаются. Прокаливаемость – способность получать закаленный слой с мартенситной и троосто-мартенситной структурой, обладающей высокой твердостью, на определенную глубину. За глубину закаленной зоны принимают расстояние от поверхности до середины слоя, где в структуре одинаковые объемы мартенсита и троостита. Билет 28 2. Титан и сплавы на его основе. Влияние легирующих элементов на полиморфизм титана и свойства , + и псевдо- сплавов. Титан серебристо-белый легкий металл с плотностью 4,5 г/см3. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680oС. Чистый иодидный титан, в котором сумма примесей составляют 0,05…0,1 %, имеет модуль упругости 112 000 МПа, предел прочности около 300 МПа, относительное удлинение 65%. Наличие примесей сильно влияет на свойства. Для технического титана ВТ1, с суммарным содержанием примесей 0,8 %, предел прочности составляет 650 МПа, а относительное удлинение – 20 %. При температуре 882oС титан претерпевает полиморфное превращение, α–титан с гексагональной решеткой переходит в β– титан с объемно-центрированной кубической решеткой. Наличие полиморфизма у титана создает предпосылки для улучшения свойств титановых сплавов с помощью термической обработки. Титан имеет низкую теплопроводность. При нормальной температуре обладает высокой коррозионной стойкостью в атмосфере, в воде, в органических и неорганических кислотах (не стоек в плавиковой, крепких серной и азотной кислотах), благодаря тому, что на воздухе быстро покрывается защитной пленкой плотных оксидов. При нагреве выше 500oС становится очень активным элементом. Он либо растворяет почти все соприкасающиеся и ним вещества, либо образует с ними химические соединения. Титановые сплавы имеют ряд преимуществ по сравнению с другими: сочетание высокой прочности (σв=800…1000 МПа) с хорошей пластичностью (δ=12…25%); малая плотность, обеспечивающая высокую удельную прочность; хорошая жаропрочность, до 600…700oС; высокая коррозионная стойкость в агрессивных средах. Однородные титановые сплавы, не подверженные старению, используют в криогенных установках до гелиевых температур. В результате легирования титановых сплавов можно получить нужный комплекс свойств. Легирующие элементы, входящие в состав промышленных титановых сплавов, образуют с титаном твердые растворы замещения и изменяют температуру аллотропического превращения. Влияние легирующих элементов на полиморфизм титана показано на рис. 21.1. Рис.21.1. Влияние легирующих элементов на полиморфизм титана: Элементы, повышающие температуру превращения, способствуют стабилизации α— твердого раствора и называются α–стабилизаторами, это – алюминий, кислород, азот, углерод. Элементы, понижающие температуру превращения, способствуют стабилизации β– твердого раствора и называются β– стабилизаторами, это – молибден, ванадий, хром, железо. Кроме α– и β–стабилизаторов различают нейтральные упрочнители: олово, цирконий, гафний. В соответствии с влиянием легирующих элементов титановые сплавы при нормальной температуре могут иметь структуру α или α+β. Билет 20
Цементация – химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя атомами углерода при нагреве до температуры 900…950 oС. Цементации подвергают стали с низким содержанием углерода (до 0,25 %). Нагрев изделий осуществляют в среде, легко отдающей углерод. Подобрав режимы обработки, поверхностный слой насыщают углеродом до требуемой глубины.Глубина цементации (h) – расстояние от поверхности изделия до середины зоны, где в структуре имеются одинаковые объемы феррита и перлита ( h. = 1…2 мм).Степень цементации – среднее содержание углерода в поверхностном слое (обычно, не более 1,2 %).Более высокое содержание углерода приводит к образованию значительных количеств цементита вторичного, сообщающего слою повышенную хрупкость.На практике применяют цементацию в твердом и газовом карбюризаторе (науглероживающей среде).Участки деталей, которые не подвергаются цементации, предварительно покрываются медью (электролитическим способом) или глиняной смесью. В результате цементации достигается только выгодное распределение углерода по сечению. Окончательно формирует свойства цементованной детали последующая термообработка. Все изделия подвергают закалке с низким отпуском. После закалки цементованное изделие приобретает высокую твердость и износостойкость, повышается предел контактной выносливости и предел выносливости при изгибе, при сохранении вязкой сердцевины.Комплекс термической обработки зависит от материала и назначения изделия. Графики различных комплексов термической обработки представлены на рис. 15.2. Рис. 15.2. Режимы термической обработки цементованных изделий Цементации подвергают зубчатые колеса, поршневые кольца, червяки, оси, ролики. Азотирование – химико-термическая обработка, при которой поверхностные слои насыщаются азотом. Впервые азотирование осуществил Чижевский И.П., промышленное применение – в двадцатые годы. При азотировании увеличиваются не только твердость и износостойкость, но также повышается коррозионная стойкость. При азотировании изделия загружают в герметичные печи, куда поступает аммиак NH3c определенной скоростью. При нагреве аммиак диссоциирует по реакции: 2NH3>2N+3H2. Атомарный азот поглощается поверхностью и диффундирует вглубь изделия. Фазы, получающиеся в азотированном слое углеродистых сталей, не обеспечивают высокой твердость, и образующийся слой хрупкий. Для азотирования используют стали, содержащие алюминий, молибден, хром, титан. Нитриды этих элементов дисперсны и обладают высокой твердостью и термической устойчивостью. Типовые азотируемые стали: 38ХМЮА, 35ХМЮА, 30ХТ2Н3Ю. Билет29 2. Конструкционные материалы малой плотности: пластмассы, их состав, применение. Преимущества и недостатки пластмасс как конструкционных материалов. |
Пластмассы. Классификация и состав пластических масс.
Пластмассы – это органические вещества, связующими которых являются полимеры. Они состоят из: 1) связующее (матрица) - полимеры; 2) наполнители (низкомолекулярные в-ва), их вводят для придания специальных св-в: понижения усадки, повышения мех. св-в (твёрдость HB, σВ, σТ). Наполнители: порошковые (сажа, графит, древесная мука), волокниты (волокна, стекловолокна, асбоволокна), слоистые (геминакс, текстолит), стеклоткань (стеклотекстолиты), газовые (газонаполненные: поропласты, пенопласты, сотопласты); 3) пластификаторы – жидкие вещества, для повышения эластичности материала; 4) отвердители; 5) краски (оксиды металлов), их вводят для изменения цвета пластмасс. Пластмассы: термопластичные, термореактивные и газонаполненные.
Термопластичные пластмассы. Свойства, область применения (на примере полиэтилена и фторопласта).
1. Полиэтилен (ПЭ). Состав мономера: [–CH2–CH2–]n. Этилен [–CH2–CH2–] при комнатной t находится в газовом состоянии, t кипения составляет -140°C. ПЭ бывает двух видов: 1)Низкой плотности высокого давления ПЭНП (ПЭВД), разветвлённая структура, плотность ρ = 0,91-0,92 г/см3, tэкспл = -70120-140°C, tплавл = 110-125°C; 2) ПЭВП (ПЭНД), линейная структура, ρ = 0,96 г/см3, tэкспл = -70140-150°C, tплавл = 150°C. Недостаток – старение ПЭ. При воздействии ионизованного излучения увеличивается прочность материала и теплостойкость. Применение: упаковочная плёнка, литьё бутылок, трубы, электроизоляционный кабель.
2. Фторопласт (ФП). Состав мономера: [–CF2–CF2–]n. ФП обладает аморфной кристаллической структурой. Плотность ρ = 0,25, tэкспл. = -269 +250°C. Химически стоек к
действию растворителей. ФП обладает очень низким коэффициентом трения μ = 0,04. Недостаток ФП: трудность его переработки. Применение: насосы, винтили, антифрикционные покрытия.
51. Термореактивные пластмассы. Свойства, область применения (на примере текстолитов).
Текстолит относят к слоистым пластикам. Связующее в этом полимере – это термореактивные смолы. Наполнители: хлопчатобумажные ткани. Среди всех слоистых пластиков этот материал обладает наибольшей способностью поглощать вибрационные нагрузки. Кроме этого хорошо сопротивляется раскалыванию. Применяют для зубчатых колёс и как вкладыши для подшипников. Температура эксплуатации: -60 60-80°C.
52. Газонаполненные пластмассы. Строение. Область применения.
Это гетерогенные (сост. из нескольких фаз) химически сложные системы, состоящие из твёрдой и газообразной фаз. В качестве связывающего используются термопласты (или реактопласты), которые образуют стенки ячеек или пор. В качестве наполнителей используют газообразные в-ва. В зависимости от физической структуры газонаполненные пластмассы делят на пенопласты, поропласты и сотопласты. Пенопласт – система, в которой присутствуют замкнутая ячеистая структура, а газовый наполнитель изолирован от окр. среды тонкими слоями полимерного связующего. Замкнутая ячеистая структура обеспечивает высокие теплоизоляционные св-ва и хорошую плавучесть. Прочность таких материалов низкая и зависит от плотности материала. ρ = 20-300 кг/м3. Применяется для изоляции кабин, холодильников, рефрижераторов, труб (поропласт), в авиа-, кораблестроении, на ж/д транспорте. Поропласт – материал с открыто-пористой структурой. Применяется для впитывания жидкости. ρ = 130-500 кг/м3. Сотопласты – тонкие листовые материалы, выполненные в форме гофра, которые затем сшиваются в виде пчелиных сот. Материалом для гофров служат ткани, которые пропитываются различными связующими. Применение: тепло- и звукоизоляционные материалы (авиация), обладают радиопрозрачностью, используются для заполнения многослойных панелей в авиа- и судостроении.
Билет13
Продолжение 1
цементита. Такая структура называется сорбит отпуска. В результате высокого отпуска повышается пластичность, снижается хрупкость, одновременно уменьшается твердость и прочность. Используется для ответственных, сильно нагреваемых деталей под ударными нагрузками.
Основным легирующим элементом является хром (0,8…1,2)%. Он повышает прокаливаемость, способствует получению высокой и равномерной твердости стали. Порог хладоломкости хромистых сталей - (0…-100)oС.
Дополнительные легирующие элементы.
Бор - 0.003%. Увеличивает прокаливаемость, а такхе повышает порог хладоломкости (+20…-60 oС.
Марганец – увеличивает прокаливаемость, однако содействует росту зерна, и повышает порог хладоломкости до (+40…-60)oС.
Титан (
0,1%) вводят для измельчения зерна в хромомарганцевой стали.
Введение молибдена (0,15…0,46%) в хромистые стали увеличивает прокаливаемость, снихает порог хладоломкости до –20…-120oС. Молибден увеличивает статическую, динамическую и усталостную прочность стали, устраняет склонность к внутреннему окислению. Кроме того, молибден снижает склонность к отпускной хрупкости сталей, содержащих никель.
Введение в хромистые стали никеля, значительно повышает прочность и прокаливаемость, понижает порог хладоломкости
Билет7
Продолжение2
Ковкими называют чугуны, в которых графит имеет хлопчатовидную форму. Их получают отжигом белых доэвтектических чугунов. По этой причине графит ковких чугунов называют углеродом отжига. Такой графит, в отличие от пластинчатого, меньше снижает механические свойства металлической основы, вследствие чего ковкие чугуны по сравнению с серыми обладают более высокой прочностью и пластичностью.
По структуре металлической основы, которая определяется режимом отжига, ковкие чугуны бывают ферритными и перлитными. Ферритные чугуны имеют более высокую пластичность, а перлитные – более высокие прочность и твердость.
Отсутствие литейных напряжений, которые полностью снимаются во время отжига , компактная форма и изолированность графитных включений обусловливают высокие механические свойства ковких чугунов.
Маркируют ковкие чугуны буквами КЧ и числами, первое из которых указывает уменьшенное в 10 раз значение σв, второе – значение δ.
Недостаток – повышенная стоимость, из-за дорогостоящего отжига.
Билет11 продолжение1-2)
Температура t0 выбрана настолько невысокой, что распада пересыщенного твердого раствора не происходит и, соответственно, не наблюдается изменения твердости (прочности) закаленного сплава.
Старение при температуре t1, вызывает повышение прочности вследствие образования зон ГП; если данная температура недостаточна для того, чтобы активировать зарождение метастабильных кристаллов, то твердость (прочности) достигнет максимального значения и в дальнейшем не будет изменяться сколь угодно длительное время (рис. 5.6, сплошная линия). Если температура t1 достаточная для зарождения метастабильных кристаллов, то твердость после достижения максимального значения начнет понижаться, сплав будет “перестариваться” (рис. 5.6, штриховая линия).
Билет7
2. Серые, ковкие, высокопрочные, вермикуляные чугуны. Их состав, марки, структуры, способы получения, свойства.
Чугунами называют железоуглеродистые сплавы, содержащие более 2,14% С и затвердевающие с образованием эвтектики.
Белыми называют чугуны, в которых весь углерод находится в связанном состоянии в виде цементита. Согласно диаграмме состояния Fe – Fe3С белые чугуны подразделяют на доэвтектические, эвтектические и завтектические. Из-за большого количества цементита они твердые (450 – 550 НВ), хрупкие и для изготовления деталей машин не используются.
Серыми называют чугуны с пластинчатой формой графита.
По химическому составу серые чугуны разделяют на обычные (нелегированные) и легированные. Обычные серые чугуны – сплавы сложного состава, содержащие основные элементы: Fe, C, Si и постоянные примеси: Mn, P и S.
Углерод оказывает определяющее влияние на качество чугунов, изменяя количество графита и литейные свойства. Чем выше концентрация углерода, тем больше выделений графита и ниже механические свойства чугуна. По этой причине максимальное содержание углерода ограничивается доэвтектической концентрацией. В то же время снижение его концентрации отрицательно сказывается на жидкотекучести и, следовательно, на литейных свойствах чугуна.
Кремний обладает сильным графитизирующим действием; способствует выделению графита в процессе затвердевания чугунов и разложению выделившегося цементита.
Марганец затрудняет графитизацию чугунов, несколько улучшает их механические свойства.
Сера – вредная примесь. Она ухудшает механические и литейные свойства чугунов: понижает жидкотекучесть, увеличивает усадку и повышает склонность к образованию трещин.
Фосфор – чугуны имеют низкую температуру плавления (950 oС), что увеличивает жидкотекучесть чугунов, но высокую твердость и хрупкость.
Механические свойства серых чугунов зависят от свойств металлической основы и главным образом от количества, формы и размеров графитных включений. Прочность, твердость и износостойкость чугунов растут с увеличением перлита в металлической основе, которая по строению аналогична сталям.
Марка серого чугуна состоит из букв СЧ и цифры, показывающей уменьшенное в 10 раз значение временного сопротивления при растяжении.
Высокопрочными называют чугуны, в которых графит имеет шаровидную форму. Их получают модифицированием магнием, который вводится в жидкий чугун в количестве 0,02 – 0,08 %.
Химический состав: тот же.
По структуре металлической основы высокопрочный чугун может быть ферритным или перлитным. Ферритным чугун в основном состоит из феррита и шаровидного графита; допускается до 20 % перлита. Структура перлитного чугуна – сорбитообразный и пластинчатый перлит и шаровидный графит; допускается до 20 % феррита.
Шаровидный графит – менее сильный концентратор напряжений, чем пластинчатый, поэтому он меньше снижает механические свойства металлической основы. Чугуны с шаровидным графитом обладают более высокой прочностью и некоторой пластичностью.
Марка высокопрочного чугуна состоит из букв ВЧ и числа, обозначающего уменьшенное в 10 раз значение временного сопротивления.
В чугунах с вермикулярным графитом структура формируется под действием комплексного модификатора, содержащего магний и редкоземельные металлы. Графит приобретает шаровидную форму (до 40 %) и вермикулярную – в виде мелких тонких прожилок – форму.
Химический состав: тот же.
Чугуны с вермикулярным графитом производят четырех марок: ЧВГ 30, ЧВГ 35, ЧВГ 40, ЧВГ 45 (Число обозначает то же самое, что и раньше).
По механическим свойствам ЧВГ занимают промежуточное положение между серыми и высокопрочными чугунами.
Билет 12
1. Диаграмма состояния двойных сплавов с промежуточной фазой постоянного состава. Фазовый и структурный анализ. Механические свойства в зависимости от состава сплава (правило Курнакова).
Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)
Диаграмма состояния представлена на рис. 5.7.
По внешнему виду диаграмма похожа на диаграмму состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии. Отличие в том, что линии предельной растворимости компонентов не перпендикулярны оси концентрации. Появляются области, в которых из однородных твердых растворов при понижении температуры выделяются вторичные фазы.