Файл: Билет 1 1 Фазы сплавов твердые растворы и промежуточные фазы. Влияние состава на свойства твердых растворов. Промежуточные фазы постоянного и переменного составов, их строение и свойства (фазы внедрения, карбиды, нитриды, электронные соединения и т д.).docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 08.11.2023

Просмотров: 87

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Билет 1

1 Фазы сплавов: твердые растворы и промежуточные фазы. Влияние состава на свойства твердых растворов. Промежуточные фазы постоянного и переменного составов, их строение и свойства (фазы внедрения, карбиды, нитриды, электронные соединения и т.д.).
1. Сплав – вещество, содержащее в своем составе два или более компонентов, по крайней мере один из которых – металл.

Получают их с помощью спекания или сплавлением. Компонент – вещество, образующее сплав.

Фаза – пространственно ограниченная и отличная от других часть системы, имеющая свою кристаллическую решётку и свои свойства. Гомогенные вещества имеют одну фазу, а гетерогенные – несколько фаз.

Структура – строение металла, в котором можно различать отдельные фазы, их форму, размеры и взаимное расположение. Структура влияет на свойства.

Равновесное состояние – когда в сплаве все фазы, присущие этой системе оформлены. Это состояние обеспечивается при медленном охлаждении, можно различать размеры и формы фаз.

Неравновесное состояние – процесс образования и обособления фаз не закончился, образуется при быстром охлаждении.

Компонент – химическое вещество, входящее в состав сплава.

В дальнейшем будем рассматривать двойные сплавы.

Различные типы кристаллических сплавов.

1. Твердые растворы – кристаллы, у которых один из компонентов образует собственную кристаллическую решетку, а второй присутствует в виде отдельных атомов, то есть собственной кристаллической решетки не имеет. Первый компонент называют растворителем, а второй – растворенным компонентом.

Выделяют твердые растворы внедрения и твердые растворы замещения.

В твердых растворах внедрения – атомы растворенного вещества находятся в межатомных промежутках растворителя.



Особенности:

  • растворенные вещества должны иметь малый атомный радиус (обычно это неметалл);

  • ограниченная растворимость;

В твердых растворах замещения – атомы растворенного вещества замещают атомы растворителя в узлах кристаллической решетки.



Особенности

  • растворенное вещество такого же типа, как и растворитель (атомы близки по размеру);

  • часто имеют неограниченную растворимость;



Билет 3

1. Диаграммы состояния двойных сплавов. Правило концентраций и отрезков. Использование диаграмм состояния для определения свойств сплавов и возможных видов их термической обработки.


Так как вид диаграммы, также как и свойства сплава, зависит от того, какие соединения или какие фазы образовали компоненты сплава, то между ними должна существовать определенная связь: правило Курнакова.



 

  1. При образовании механических смесей свойства изменяются по линейному закону.

  2. При образовании твердых растворов с неограниченной растворимостью свойства сплавов изменяются по криволинейной зависимости,

  3. При образовании твердых растворов с ограниченной растворимостью свойства в интервале концентраций, отвечающих однофазным твердым растворам, изменяются по криволинейному закону, а в двухфазной области – по линейному закону.

4. При образовании химических соединений концентрация химического соединения отвечает максимуму на кривой. Эта точка перелома, соответствующая химическому соединению, называется сингулярной точкой


Билет 5

1.Диаграмма Fe-Fe3C, ее фазовый и структурный анализ. Влияние углерода на структуру и свойства сталей.
Диаграмма состояния «Железо – цементит». Превращения в сплавах на основе железа при нагреве и охлаждении.

Feα от низких температур до 768°C, эта фаза имеет решётку о.ц.к., низкую прочность и твёрдость 80 HB, низкий предел текучести, удельный вес 7,8 г/см3, имеет магнитные свойства (ферромагнетик), растворяет углерод 0,006% при 20°C и 0,02% при 727°C. Твёрдый раствор углерода в Feα наз. феррит. Свойства феррита близки к свойствам чистого Fe. Feβ – о.ц.к., существует от 768°C до 910°C, растворяет углерод в небольших

к
оличествах, немагнитен, при 768°C теряет магнетизм, 768°C – точка Кюри, парамагнетик. В 910-1400°C существует Feγ, решётка г.ц.к., это железо немагнитно, растворяет 2,14% C при 1147°C. Раствор углерода в Feγ наз. аустенит, немагнитен, твёрже феррита, достаточно пластичен. Feδ существует в 1400-1539°C. 1539°C – плавление Fe. Переход Feα→Feγ происходит с изменением объёма (1%) (у α больше V). Fe3C - 6,7% C, твёрдость 800 HB, Fe3C – цементит, при низких температурах магнитен. Fe3C→Fe+ Графит. При 1147°C идёт реакция, в результате которой образуется эвтектика: смесь аустенита и цементита – ледебурит. [А+Ц] - 4,3% C. Феррит+цементит – Перлит. [Ф+Ц] – 0,8% C, твёрдость HB 800. Ла – [А+Ц], Лп – [П+Ц], А→П. Из жидкости выделяется ЦI, из А - ЦII, из Ф - ЦIII. До 2,14% C – стали, после – чугуны. Сначала жидкость переходит в аустенит, потом происходит переход жидкости в ледебурит аустенитовый (эвтектическая реакция), аустенит переходит в перлит (эвтектоидная реакция), аустенит переходит в феррит.

Билет 7

1. Элементарная ячейка кристаллической решетки и ее характеристики. Полиморфизм, анизотропия, их использование в технике.
Кристаллическое тело характеризуется правильным расположением атомов в пространстве. У аморфных веществ расположение атомов случайно. Кристаллические вещества образуют кристаллическую решётку. 14 типов кристаллических решёток. Крист. решётка характеризуется элементарной ячейкой. Эл. ячейка – кристаллич. решётка наименьшего объёма, воспроизведение которой в пространстве множество раз создаёт пространственную крист. решётку. Атомы в пространстве располагаются упорядоченно, образуя кристаллическую решётку. Основные типы:

1. Простая кубическая решётка: в узлах кубика атомы касаются друг друга. Параметры: Период решётки (расстояние между атомами a =d), d – диаметр атома. 1/8·8 =1 атом на элемент, ячейку. Для химического соединения данный тип решётки.

2. Кубическая объёмно-центрированная решётка характерна для тугоплавких металлов. a =1,21·d. 1/8·8 +1 =2. Feα, Ti, W, Nb.

3. Кубическая гранецентрированная решётка . 1/8·8 +1/2·6 =4. Характерна для пластичных металлов. Cu, Feγ, Au.

3. Анизотропия кристалла и изотропия кристаллических тел.

Анизотропия – это различие свойств в разных направлениях в кристалле. В монокристалле – анизотропия. Поликристаллические вещества – где много кристаллов. В поликристаллическом теле – изотропия (одинаковые свойства по разным направлениям).

Билет 9

1. Закалка сталей. Оптимальная температура закалки углеродистых сталей. Влияние легирующих элементов на критическую скорость закалки. Внутренние напряжения в закаленных сталях.

Закалка 

Конструкционные стали подвергают закалке и отпуску для повышения прочности и твердости, получения высокой пластичности, вязкости и высокой износостойкости, а инструментальные – для повышения твердости и износостойкости.

Основными параметрами являются температура нагрева и скорость охлаждения. Продолжительность нагрева зависит от нагревательного устройства, по опытным данным на 1 мм сечения затрачивается: в электрической печи – 1,5…2 мин.; в пламенной печи – 1 мин.; в соляной ванне – 0,5 мин.; в свинцовой ванне – 0,1…0,15 мин.

По температуре нагрева различают виды закалки:

полная, с температурой нагрева на 30…50oС выше критической температуры А3

.

Применяют ее для доэвтектоидных сталей. Изменения структуры стали при нагреве и охлаждении происходят по схеме:

.

Неполная закалка доэвтектоидных сталей недопустима, так как в структуре остается мягкий феррит. Изменения структуры стали при нагреве и охлаждении происходят по схеме:



неполная с температурой нагрева на 30…50 oС выше критической температуры А1



Применяется для заэвтектоидных сталей. Изменения структуры стали при нагреве и охлаждении происходят по схеме:

.

После полной закалки заэвтектоидных сталей получают дефектную структуру грубоигольчатого мартенсита.

Заэвтектоидные стали перед закалкой обязательно подвергают отжигу – сфероидизации, чтобы цементит имел зернистую форму.

Охлаждение при закалке.

Для получения требуемой структуры изделия охлаждают с различной скоростью, которая в большой степени определяется охлаждающей средой, формой изделия и теплопроводностью стали.

Режим охлаждения должен исключить возникновение больших закалочных напряжений. При высоких скоростях охлаждения при закалке возникают внутренние напряжения, которые могут привести к короблению и растрескиванию.

Внутренние напряжения, уравновешиваемые в пределах макроскопических частей тела, называются напряжениями I рода. Они ответственны за искажение формы (коробление) и образование трещин при термообработке. Причинами возникновения напряжений являются:

  • различие температуры по сечению изделия при охлаждении;

  • разновременное протекание фазовых превращений в разных участках

Закаливаемость – способность стали приобретать высокую твердость при закалке.

Закаливаемость определяется содержанием углерода. Стали с содержанием углерода менее 0,20 % не закаливаются.

Прокаливаемость – способность получать закаленный слой с мартенситной и троосто-мартенситной структурой, обладающей высокой твердостью, на определенную глубину.

За глубину закаленной зоны принимают расстояние от поверхности до середины слоя, где в структуре одинаковые объемы мартенсита и троостита.
Билет 28

2. Титан и сплавы на его основе. Влияние легирующих элементов на полиморфизм титана и свойства , + и псевдо- сплавов.
Титан серебристо-белый легкий металл с плотностью 4,5 г/см3. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680oС.

Чистый иодидный титан, в котором сумма примесей составляют 0,05…0,1 %, имеет модуль упругости 112 000 МПа, предел прочности около 300 МПа, относительное удлинение 65%. Наличие примесей сильно влияет на свойства. Для технического титана ВТ1, с суммарным содержанием примесей 0,8 %, предел прочности составляет 650 МПа, а относительное удлинение – 20 %.

При температуре 882oС титан претерпевает полиморфное превращение, α–титан с гексагональной решеткой переходит в β– титан с объемно-центрированной кубической решеткой. Наличие полиморфизма у титана создает предпосылки для улучшения свойств титановых сплавов с помощью термической обработки.

Титан имеет низкую теплопроводность. При нормальной температуре обладает высокой коррозионной стойкостью в атмосфере, в воде, в органических и неорганических кислотах (не стоек в плавиковой, крепких серной и азотной кислотах), благодаря тому, что на воздухе быстро покрывается защитной пленкой плотных оксидов. При нагреве выше 500oС становится очень активным элементом. Он либо растворяет почти все соприкасающиеся и ним вещества, либо образует с ними химические соединения.

Титановые сплавы имеют ряд преимуществ по сравнению с другими: сочетание высокой прочности (σв=800…1000 МПа) с хорошей пластичностью (δ=12…25%); малая плотность, обеспечивающая высокую удельную прочность; хорошая жаропрочность, до 600…700oС;

высокая коррозионная стойкость в агрессивных средах.

Однородные титановые сплавы, не подверженные старению, используют в криогенных установках до гелиевых температур.

В результате легирования титановых сплавов можно получить нужный комплекс свойств. Легирующие элементы, входящие в состав промышленных титановых сплавов, образуют с титаном твердые растворы замещения и изменяют температуру аллотропического превращения. Влияние легирующих элементов на полиморфизм титана показано на рис. 21.1.
Рис.21.1. Влияние легирующих элементов на полиморфизм титана:

 

Элементы, повышающие температуру превращения, способствуют стабилизации α— твердого раствора и называются α–стабилизаторами, это – алюминий, кислород, азот, углерод.

Элементы, понижающие температуру превращения, способствуют стабилизации β– твердого раствора и называются β– стабилизаторами, это – молибден, ванадий, хром, железо.

Кроме α– и β–стабилизаторов различают нейтральные упрочнители: олово, цирконий, гафний.

В соответствии с влиянием легирующих элементов титановые сплавы при нормальной температуре могут иметь структуру α или α+β.


Билет 20

  1. Цементуемые и азотируемые стали, их состав, марки, термическая обработка и применение.

Цементация химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя атомами углерода при нагреве до температуры 900…950 oС.

Цементации подвергают стали с низким содержанием углерода (до 0,25 %).

Нагрев изделий осуществляют в среде, легко отдающей углерод. Подобрав режимы обработки, поверхностный слой насыщают углеродом до требуемой глубины.Глубина цементации (h) – расстояние от поверхности изделия до середины зоны, где в структуре имеются одинаковые объемы феррита и перлита ( h. = 1…2 мм).Степень цементации среднее содержание углерода в поверхностном слое (обычно, не более 1,2 %).Более высокое содержание углерода приводит к образованию значительных количеств цементита вторичного, сообщающего слою повышенную хрупкость.На практике применяют цементацию в твердом и газовом карбюризаторе (науглероживающей среде).Участки деталей, которые не подвергаются цементации, предварительно покрываются медью (электролитическим способом) или глиняной смесью.

В результате цементации достигается только выгодное распределение углерода по сечению. Окончательно формирует свойства цементованной детали последующая термообработка. Все изделия подвергают закалке с низким отпуском. После закалки цементованное изделие приобретает высокую твердость и износостойкость, повышается предел контактной выносливости и предел выносливости при изгибе, при сохранении вязкой сердцевины.Комплекс термической обработки зависит от материала и назначения изделия.

Графики различных комплексов термической обработки представлены на рис. 15.2.



Рис. 15.2. Режимы термической обработки цементованных изделий

Цементации подвергают зубчатые колеса, поршневые кольца, червяки, оси, ролики.

Азотирование химико-термическая обработка, при которой поверхностные слои насыщаются азотом.

Впервые азотирование осуществил Чижевский И.П., промышленное применение – в двадцатые годы.

При азотировании увеличиваются не только твердость и износостойкость, но также повышается коррозионная стойкость.

При азотировании изделия загружают в герметичные печи, куда поступает аммиак NH3c определенной скоростью. При нагреве аммиак диссоциирует по реакции: 2NH3>2N+3H2. Атомарный азот поглощается поверхностью и диффундирует вглубь изделия.

Фазы, получающиеся в азотированном слое углеродистых сталей, не обеспечивают высокой твердость, и образующийся слой хрупкий.

Для азотирования используют стали, содержащие алюминий, молибден, хром, титан. Нитриды этих элементов дисперсны и обладают высокой твердостью и термической устойчивостью.

Типовые азотируемые стали: 38ХМЮА, 35ХМЮА, 30ХТ2Н3Ю.
Билет29

2. Конструкционные материалы малой плотности: пластмассы, их состав, применение. Преимущества и недостатки пластмасс как конструкционных материалов.


Пластмассы. Классификация и состав пластических масс.

Пластмассы – это органические вещества, связующими которых являются полимеры. Они состоят из: 1) связующее (матрица) - полимеры; 2) наполнители (низкомолекулярные в-ва), их вводят для придания специальных св-в: понижения усадки, повышения мех. св-в (твёрдость HB, σВ, σТ). Наполнители: порошковые (сажа, графит, древесная мука), волокниты (волокна, стекловолокна, асбоволокна), слоистые (геминакс, текстолит), стеклоткань (стеклотекстолиты), газовые (газонаполненные: поропласты, пенопласты, сотопласты); 3) пластификаторы – жидкие вещества, для повышения эластичности материала; 4) отвердители; 5) краски (оксиды металлов), их вводят для изменения цвета пластмасс. Пластмассы: термопластичные, термореактивные и газонаполненные.

Термопластичные пластмассы. Свойства, область применения (на примере полиэтилена и фторопласта).

1. Полиэтилен (ПЭ). Состав мономера: [–CH2–CH2–]n. Этилен [–CH2–CH2–] при комнатной t находится в газовом состоянии, t кипения составляет -140°C. ПЭ бывает двух видов: 1)Низкой плотности высокого давления ПЭНП (ПЭВД), разветвлённая структура, плотность ρ = 0,91-0,92 г/см3, tэкспл = -70120-140°C, tплавл = 110-125°C; 2) ПЭВП (ПЭНД), линейная структура, ρ = 0,96 г/см3, tэкспл = -70140-150°C, tплавл = 150°C. Недостаток – старение ПЭ. При воздействии ионизованного излучения увеличивается прочность материала и теплостойкость. Применение: упаковочная плёнка, литьё бутылок, трубы, электроизоляционный кабель.

2. Фторопласт (ФП). Состав мономера: [–CF2–CF2–]n. ФП обладает аморфной кристаллической структурой. Плотность ρ = 0,25, tэкспл. = -269  +250°C. Химически стоек к

действию растворителей. ФП обладает очень низким коэффициентом трения μ = 0,04. Недостаток ФП: трудность его переработки. Применение: насосы, винтили, антифрикционные покрытия.

51. Термореактивные пластмассы. Свойства, область применения (на примере текстолитов).

Текстолит относят к слоистым пластикам. Связующее в этом полимере – это термореактивные смолы. Наполнители: хлопчатобумажные ткани. Среди всех слоистых пластиков этот материал обладает наибольшей способностью поглощать вибрационные нагрузки. Кроме этого хорошо сопротивляется раскалыванию. Применяют для зубчатых колёс и как вкладыши для подшипников. Температура эксплуатации: -60  60-80°C.

52. Газонаполненные пластмассы. Строение. Область применения.

Это гетерогенные (сост. из нескольких фаз) химически сложные системы, состоящие из твёрдой и газообразной фаз. В качестве связывающего используются термопласты (или реактопласты), которые образуют стенки ячеек или пор. В качестве наполнителей используют газообразные в-ва. В зависимости от физической структуры газонаполненные пластмассы делят на пенопласты, поропласты и сотопласты. Пенопласт – система, в которой присутствуют замкнутая ячеистая структура, а газовый наполнитель изолирован от окр. среды тонкими слоями полимерного связующего. Замкнутая ячеистая структура обеспечивает высокие теплоизоляционные св-ва и хорошую плавучесть. Прочность таких материалов низкая и зависит от плотности материала. ρ = 20-300 кг/м3. Применяется для изоляции кабин, холодильников, рефрижераторов, труб (поропласт), в авиа-, кораблестроении, на ж/д транспорте. Поропласт – материал с открыто-пористой структурой. Применяется для впитывания жидкости. ρ = 130-500 кг/м3. Сотопласты – тонкие листовые материалы, выполненные в форме гофра, которые затем сшиваются в виде пчелиных сот. Материалом для гофров служат ткани, которые пропитываются различными связующими. Применение: тепло- и звукоизоляционные материалы (авиация), обладают радиопрозрачностью, используются для заполнения многослойных панелей в авиа- и судостроении.
Билет13

Продолжение 1

цементита. Такая структура называется сорбит отпуска. В результате высокого отпуска повышается пластичность, снижается хрупкость, одновременно уменьшается твердость и прочность. Используется для ответственных, сильно нагреваемых деталей под ударными нагрузками.

Основным легирующим элементом является хром (0,8…1,2)%. Он повышает прокаливаемость, способствует получению высокой и равномерной твердости стали. Порог хладоломкости хромистых сталей - (0…-100)oС.

Дополнительные легирующие элементы.

Бор - 0.003%. Увеличивает прокаливаемость, а такхе повышает порог хладоломкости (+20…-60 oС.

Марганец – увеличивает прокаливаемость, однако содействует росту зерна, и повышает порог хладоломкости до (+40…-60)oС.

Титан (

0,1%) вводят для измельчения зерна в хромомарганцевой стали.



Введение молибдена (0,15…0,46%) в хромистые стали увеличивает прокаливаемость, снихает порог хладоломкости до –20…-120oС. Молибден увеличивает статическую, динамическую и усталостную прочность стали, устраняет склонность к внутреннему окислению. Кроме того, молибден снижает склонность к отпускной хрупкости сталей, содержащих никель.

Введение в хромистые стали никеля, значительно повышает прочность и прокаливаемость, понижает порог хладоломкости


Билет7

Продолжение2

Ковкими называют чугуны, в которых графит имеет хлопчатовидную форму. Их получают отжигом белых доэвтектических чугунов. По этой причине графит ковких чугунов называют углеродом отжига. Такой графит, в отличие от пластинчатого, меньше снижает механические свойства металлической основы, вследствие чего ковкие чугуны по сравнению с серыми обладают более высокой прочностью и пластичностью.

По структуре металлической основы, которая определяется режимом отжига, ковкие чугуны бывают ферритными и перлитными. Ферритные чугуны имеют более высокую пластичность, а перлитные – более высокие прочность и твердость.

Отсутствие литейных напряжений, которые полностью снимаются во время отжига , компактная форма и изолированность графитных включений обусловливают высокие механические свойства ковких чугунов.

Маркируют ковкие чугуны буквами КЧ и числами, первое из которых указывает уменьшенное в 10 раз значение σв, второе – значение δ.

Недостаток – повышенная стоимость, из-за дорогостоящего отжига.


Билет11 продолжение1-2)

Температура t0 выбрана настолько невысокой, что распада пересыщенного твердого раствора не происходит и, со­ответственно, не наблюдается измене­ния твердости (прочности) закаленного сплава.

Старение при температуре t1, вызывает повышение прочности вследствие образования зон ГП; если данная тем­пература недостаточна для того, чтобы активировать зарождение метастабильных кристаллов, то твердость (прочности) достигнет максимального значения и в дальнейшем не будет изменяться сколь угодно длительное время (рис. 5.6, сплошная линия). Если темпе­ратура t1 достаточная для зарождения метастабильных кристаллов, то твер­дость после достижения максимального значения начнет понижаться, сплав бу­дет “перестариваться” (рис. 5.6, штриховая линия).

Билет7

2. Серые, ковкие, высокопрочные, вермикуляные чугуны. Их состав, марки, структуры, способы получения, свойства.


Чугунами называют железоуглеродистые сплавы, содержащие более 2,14% С и затвердевающие с образованием эвтектики.

Белыми называют чугуны, в которых весь углерод находится в связанном состоянии в виде цементита. Согласно диаграмме состояния Fe – Fe3С белые чугуны подразделяют на доэвтектические, эвтектические и завтектические. Из-за большого количества цементита они твердые (450 – 550 НВ), хрупкие и для изготовления деталей машин не используются.

Серыми называют чугуны с пластинчатой формой графита.

По химическому составу серые чугуны разделяют на обычные (нелегированные) и легированные. Обычные серые чугуны – сплавы сложного состава, содержащие основные элементы: Fe, C, Si и постоянные примеси: Mn, P и S.

Углерод оказывает определяющее влияние на качество чугунов, изменяя количество графита и литейные свойства. Чем выше концентрация углерода, тем больше выделений графита и ниже механические свойства чугуна. По этой причине максимальное содержание углерода ограничивается доэвтектической концентрацией. В то же время снижение его концентрации отрицательно сказывается на жидкотекучести и, следовательно, на литейных свойствах чугуна.

Кремний обладает сильным графитизирующим действием; способствует выделению графита в процессе затвердевания чугунов и разложению выделившегося цементита.

Марганец затрудняет графитизацию чугунов, несколько улучшает их механические свойства.

Сера – вредная примесь. Она ухудшает механические и литейные свойства чугунов: понижает жидкотекучесть, увеличивает усадку и повышает склонность к образованию трещин.

Фосфор – чугуны имеют низкую температуру плавления (950 oС), что увеличивает жидкотекучесть чугунов, но высокую твердость и хрупкость.

Механические свойства серых чугунов зависят от свойств металлической основы и главным образом от количества, формы и размеров графитных включений. Прочность, твердость и износостойкость чугунов растут с увеличением перлита в металлической основе, которая по строению аналогична сталям.

Марка серого чугуна состоит из букв СЧ и цифры, показывающей уменьшенное в 10 раз значение временного сопротивления при растяжении.

Высокопрочными называют чугуны, в которых графит имеет шаровидную форму. Их получают модифицированием магнием, который вводится в жидкий чугун в количестве 0,02 – 0,08 %.


Химический состав: тот же.

По структуре металлической основы высокопрочный чугун может быть ферритным или перлитным. Ферритным чугун в основном состоит из феррита и шаровидного графита; допускается до 20 % перлита. Структура перлитного чугуна – сорбитообразный и пластинчатый перлит и шаровидный графит; допускается до 20 % феррита.

Шаровидный графит – менее сильный концентратор напряжений, чем пластинчатый, поэтому он меньше снижает механические свойства металлической основы. Чугуны с шаровидным графитом обладают более высокой прочностью и некоторой пластичностью.

Марка высокопрочного чугуна состоит из букв ВЧ и числа, обозначающего уменьшенное в 10 раз значение временного сопротивления.

В чугунах с вермикулярным графитом структура формируется под действием комплексного модификатора, содержащего магний и редкоземельные металлы. Графит приобретает шаровидную форму (до 40 %) и вермикулярную – в виде мелких тонких прожилок – форму.

Химический состав: тот же.

Чугуны с вермикулярным графитом производят четырех марок: ЧВГ 30, ЧВГ 35, ЧВГ 40, ЧВГ 45 (Число обозначает то же самое, что и раньше).

По механическим свойствам ЧВГ занимают промежуточное положение между серыми и высокопрочными чугунами.

Билет 12

1. Диаграмма состояния двойных сплавов с промежуточной фазой постоянного состава. Фазовый и структурный анализ. Механические свойства в зависимости от состава сплава (правило Курнакова).
Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)

 

Диаграмма состояния представлена на рис. 5.7.

По внешнему виду диаграмма похожа на диаграмму состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии. Отличие в том, что линии предельной растворимости компонентов не перпендикулярны оси концентрации. Появляются области, в которых из однородных твердых растворов при понижении температуры выделяются вторичные фазы.