Файл: Протокол от 2017г. 2017г. Тесты по дисциплине.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 08.11.2023

Просмотров: 1018

Скачиваний: 9

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


1) на нахождение четвертого пропорционального;

2) на нахождение неизвестного по двум разностям;

3) не является типовой задачей;

4) на пропорциональное деление.

9. Какие методические приемы используются в начальном изучении математики при ознакомлении с конкретной величиной:

1) ознакомление с аксиомами, характеризующими величину;

2) практическая работа для сравнения предметов по различным признакам, выделение определенного признака, установление отношений больше, меньше или равно по этому признаку;

3) введение названия величины с опорой на дошкольный опыт обучающихся, обозначающего определенный признак предметов окружающей действительности;

4) рассмотрение исторических сведений об измерении величины;

10. Какие методические приемы используются в начальном изучении математики для расширения знаний о величинах:

1) ознакомление с аксиомами, характеризующими величину;

2) практическая работа для установления отношений больше, меньше или равно между предметами окружающей действительности по определенному признаку;

3) поиск в сети «Интернет» или книгах сведений о природных объектах, которые выражены значениями величин, характеризующих их размеры, массу и др.;

4) рассмотрение исторических сведений об измерении величин;

11. Какие методические приемы используются в начальном изучении математики при формировании умения применять знания и умения о величинах в практических ситуациях и в познавательных целях:

1) практическая работа для установления отношений больше, меньше или равно между предметами окружающей действительности по определенному признаку;

2) поиск в сети «Интернет» или книгах сведений о природных объектах, которые выражены значениями величин, характеризующих их размеры, массу и др.;

3) рассмотрение исторических сведений об измерении величин;

4) составление и решение текстовых задач на основе данных об объектах природы, быта и др., о процессах взвешивания, работы, движения и др., обсуждение значений величин, полученных при решении задач;

12. Какие из методических приемов не используются в начальных классах при изучении величин:

1) ознакомление с аксиомами, характеризующими величину;

2) практическая работа для установления отношений больше, меньше или равно между предметами окружающей действительности по определенному признаку;


3) поиск в сети «Интернет» или книгах сведений о природных объектах, которые выражены значениями величин, характеризующих их размеры, массу и др.;

4) сравнение предметов окружающей действительности по определенному признаку;

5) рассмотрение исторических сведений об измерении величин?

13. На каком уровне изучаются «величины» в начальных классах:

1) на теоретическом уровне;

2) на уровне общих представлений и практического применения знаний и умений;

3) на понятийном уровне;

4) верно 1 и 3.

14. Найдите утверждения, подтверждающие, что площадь — это величина:

1) площадь имеют только многоугольники;

2) площадь можно измерить и выразить результат измерения числом;

3) площадь — это место в городе, где проводятся праздники;

4) площадь характеризует свойство предмета занимать место на плоскости (по­верхности);

 15. Установите последовательность этапов работы над определенной величиной:

а)опосредованное сравнение носителей величины с помощью условной мерки;

б)введение стандартной единицы измерения для данной величины;

в) непосредственное сравнение предметов по определенному свойству, характеризующему величину;

г) сравнений числовых значений величины, выполнение арифметических действий с ними;

1) в, а, б, г;

2) а, в, б, г;

3) в, г, а, б.

 16. Установите последовательность приемов организации работы над определенной величиной:

а)знакомство с измерительными инструментами (линейкой, палеткой и др.), тренировка в измерении величин;

б) сравнение величин визуально, с помощью мускульных усилий, наложением;

в)сравнение, сложение, вычитание однородных величин, умножение и деление величины на число, нахождение кратного отношения величин;

г) измерение величин различными мерками,исследование взаимосвязи между единицей измерения величины и ее числовым значением;

д) практические работы учащихся при введении общепринятых единиц измерения величин ( см, л, кг, см)2.

1) а, в, б, г, д;

2) б, в, г, а, д;

3) б, г, д, а, в.

17. Пониманию младшими школьниками взаимосвязи между понятиями: число и величина не способствует:

1) ознакомление с историческими сведениями о величинах;

2) упражнения в измерении величин;

3) построение отрезка по заданной его длине;

4) построение прямоугольника по его периметру или площади;

5) выполнение заданий на установление соответствия между величиной и её числовым значением.



 18. Укажите неверное утверждение. Ознакомление младших школьников со старинными единицами измерения величин (ладонь, локоть, сажень, пуд, фунт и др.) дает учителю возможность:

1) расширить кругозор обучающихся и воспитывать у них интерес к математике;

2) обосновать необходимость введения стандартных (общепринятых) единиц измерения;

3) формировать умение работать на уроках математики в парах и группах;

4) проиллюстрировать прикладную направленности начального курса математики.

19. Укажите неверное утверждение. Обучающиеся выполняют измерение ве­личин с помощью различных мерок с целью:

1) осознания зависимости между мер­кой и числом, полученным в результате измерения;

2)развития практических умений измерять величины;

3) формирования умений работать в группах;

4) осознания необходимости выбора единой (общепринятой)единицы измерения конкретной величины.

 20. Укажите несущественное. Для формирования умения измерять величины младший школьник должен знать:

1) таблицу мер каждой из величин;

2) каким именно прибором измеряют данную величину;

3) шкалу прибора и правила работы с ним;

21.Первые представления о форме, размерах и взаимном расположении предметов в пространстве дети получают:

1) в дошкольный период развития математических представлений;

2) с первыхдней обучения ребенка в школе;

3)на внеурочных занятиях;

4) в ходе проектной деятельности;

5) в четвертом классе.

 22. Каким геометрическим понятиям даются определения в курсе математики начальной школы:

1) круг и окружность;

2) прямоугольник и квадрат;

3) угол и многоугольник;

4) длина и площадь?

 23.Первоклассникам розданы карточки с изображением различных многоугольников. С какой целью учитель предложил задание: « Раскрасьте все треугольники. Посчитайте, сколько сторон, вершин, углов у треугольника»:

1) формирование понятия, что форма фигуры не зависит от материала, из которого она изготовлена.

2) выявление существенных и несущественных признаков треугольника;

3)развивать умения анализировать геометрические фигуры, сравнивать, классифицировать и т.п.;

4)Верны утверждения 2 и 3?

5) верны утверждения 1,2 и 3?

 24.Укажите среди утверждений неверные. При формировании представлений о прямой линии у первоклассников полезно решать следующие задачи:

1) сравнивать прямую и кривую линии
;

2) ставить точки на прямой и вне прямой линии, устанавливать положение точки относительно заданной прямой линии;

3) проводить прямые и кривые линии через 1,2,3 заданные точки;

 25. Умение находить периметр многоугольника предполагает владение обучающимся следующими умениями:

1) находить длину ломаной линии; 2) пользоваться линейкой;

3) измерять стороны многоугольника;

4) вычислять сумму нескольких чисел – значений величин;

5) все ответы верны.

 26.Обучающиеся в начальных классах усваивают понятие периметр только на примере многоугольника: «Периметр многоугольника – это сумма длин всех его сторон». В чем ограниченность такого подхода к изучению периметра:

1) не отражается общее то, что периметр – это длина границы любой плоской геометрической фигуры;

2) не содержится информация о возможности и способе нахождения периметра круга и других фигур, ограниченных кривой замкнутой линией;

3) нет верного ответа; 4) верны 1 и 2 утверждения.

27. Обучающимся в третьем классе предложено задание: «Сколько можно построить прямоугольников с периметром 24 см, длина и ширина которых выражается натуральными числами? Заполните таблицу».

Каковы учебные задачи этого задания:

1) актуализация понятия периметр;

2) применение правила нахождения периметра прямоугольника;

3) обучение построению прямоугольников;

4) обучение младших школьников работать с информацией;

5) связь теории и практики в обучении математике;

 28. Каких объяснений достаточно для обоснования ошибки, допущенной при вычитании:

30 – 6 = 36

300 – 60 = 360.

1) при вычитании должно получиться меньше, чем было, но 36 больше, чем 30. (360 > 300);

2) 36 это 30 и 6. (360 это 300 и 60);

3) вычитание не выполнено, найдена сумма чисел;

4) надо было вычитать, а не складывать.

 29. При изучении письменного вычитания с переходом «через разряд» необходимо провести следующие подготовительные упражнения:

1) повторить вычитание вида: 10 – □;

2) повторить таблицу сложения однозначных чисел;

3) соотношение разрядных единиц, табличные случаи вычитания в пределах 20;

4) выучить состав чисел до 10.

 30.При вычитании вида 8763 – 245 ученик вычел 2 из 8, 4 из 7, 5 из 6. Какова причина ошибки?

1) незнание таблицы вычитания однозначных чисел;

2) непонимание смысла вычитания;

3) аналогия со сложением;

4)Незнание алгоритма.

 

Тестовые задания

по дисциплине «Методика преподавания математики в начальных классах»


Вариант №3

1. Изучение математики в начальной школе направлено на достижение следующих целей:

1) математическое развитие младших школьников;

2) освоение начальных математических знаний и умений применять их в решении учебных, познавательных и практических задач;

3) воспитание интереса к математике, стремления использовать математические знания в повседневной жизни;

2. Математическое развитие обучающихся в начальных классах не предусматривает:

1) совершенствование вычислительной культуры младших школьников;

2) формирование способности к интеллектуальной деятельности;

3) развитие пространственного мышления и математической речи;

4) формирование умения вести поиск информации (фактов, оснований для упорядочения, вариантов и др.).

 3. Метапредметными результатами изучения математики младшими школьниками не являются:

1) умения анализировать учебную ситуацию с точки зрения математических характеристик, устанавливать количественные и пространственные отношения объектов окружающего мира;

2) освоенные знания о числах и величинах, арифметических действиях, геометрических фигурах;

3) способность моделировать и определять логику решения практической и учебной задачи;

4) умения планировать, контролировать, корректировать ход выполнения заданий.

5) Укажите неправильный ответ.

4.Формы обучения математике в начальных классах включают в себя:

1) урок;

2) домашнюю работу учащихся;

3) работу со счетным материалом;

4) экскурсию.

5. Укажите верное суждение:

1) внеурочная работа — это обязательные систематические занятия педагога с учащимися в свободное от основных занятий время;

2) урок − это основная форма обучения младших школьников математике;

3) к видам внеклассной работы относятся: домашняя работа учащихся, групповая работа, фронтальная работа;

4) основными методами обучения младших школьников математике являются наблюдение и эксперимент.

 6. Установите последовательность этапов урока открытия нового: 5 1 2 4 3

1) постановка учебной задачи;

2) открытие нового знания;

3) самостоятельная работа с самопроверкой;

4) первичное закрепление;

5) актуализация опорных знаний.

7. Тип и структура урока математики в начальной школе не определяются:

1) дидактическими задачами урока;

2) местом урока в системе уроков по теме;

3) местом урока в расписании;

4) степенью освоения учащимися содержания учебной темы.