ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 08.11.2023
Просмотров: 24
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Котлы, в которых давление в топке и начального газохода поддерживается близким к атмосферному совместной работой дутьевых вентиляторов и называют котлами с уравновешенной тягой. В этих котлах воздушный тракт находится под давлением и его сопротивление преодолевается с помощью дутьевого вентилятора, а газовый тракт находится под разрежением (сопротивление этого тракта преодолевается дымососом). Работа газового тракта под разрежением позволяет уменьшить выбросы из газоходов в котельное помещение высокотемпературных газов и золы.
В настоящее время стремятся все котлы, в том числе и с уравновешенной тягой, изготовлять в газоплотном исполнении.
По виду водопарового (пароводяного) тракта различают барабанные и прямоточные котлы. Во всех типах котлов по экономайзеру и пароперегревателю вода и пар проходят однократно. Различие определяется принципом работы испарительных поверхностей нагрева.
В барабанных котлах пароводяная смесь в замкнутом контуре, включающем барабан, коллекторы, и испарительные поверхности нагрева, проходит многократно, причем в котлах с принудительной циркуляцией перед входом воды в трубы испарительных поверхностей ставят дополнительный насос. В прямоточных котлах рабочее тело по всем поверхностям нагрева проходит однократно под действием напора, развиваемого питательным насосом.
По фазовому состоянию выводимого из котла (топки) шлака различают котлы с твердым и жидким шлакоудалением. В котлах с твердым шлакоудалением (ТШУ) шлак из топки удаляется в твердом состоянии, а в котлах с жидким шлакоудалением (ЖМУ) шлак удаляется в расплавленном состоянии.
Паровые котлы характеризуются основными параметрами: номинальной паропроизводительностью, давлением, температурой пара (основного и промежуточного перегрева) и питательной воды.
Под номинальной паропроизводительностью понимают наибольшую нагрузку (т/ч или кг/с), которую стационарный котел должен обеспечивать в длительной эксплуатации при сжигании основного топлива (или при подводе номинального количества теплоты) при номинальных значениях температуры пара и питательной воды (с учетом допускаемых отклонений).
Номинальными давлением и температурой пара считают те, которые должны быть обеспечены непосредственно перед паропроводом к потребителю пара при номинальной производительности котла (для температуры - дополнительно при номинальном давлении и температуре питательной воды).
Номинальной температурой промежуточного перегрева пара называют температуру пара непосредственно за промежуточным пароперегревателем котла при номинальных значениях давления пара, температуры питательной воды, паропроизводительности, а также номинальных значениях остальных параметров пара промежуточного перегрева с учетом допускаемых отклонений.
Номинальная температура питательной воды - это температура, которую необходимо обеспечить перед входом воды в экономайзер или в другой относящийся к котлу подогреватель питательной воды (при их отсутствии – перед входом в барабан котла) при номинальной паропроизводительности.
По параметрам рабочего тела различают котлы низкого (мене 1 МПа), среднего (1-10 МПа) и сверхкритического давления (более 22,5 МПа). Наиболее характерные особенности котла и основные параметры вводятся в его обозначение. В принятых по ГОСТ 3619-82 обозначениях указывается тип котла, паропроизводительность (т/ч) и давление (МПа), температура перегрева и промежуточного перегрева пара, вид сжигаемого топлива и системы шлакоудаления для твердого топлива и некоторые другие особенности.
Буквенные обозначения типа котла и вида сжигаемого топлива: Е – с естественной циркуляцией, Пр – с принудительной циркуляцией, П – прямоточный, Пп – прямоточный с промежуточным перегревом; Еп – барабанный с естественной циркуляцией и промежуточным перегревом; Г – газообразное топлива, М – мазут, Б – бурые угли, К – каменные угли, Т,Ж – соответственно с твердым и жидким шлакоудалением.
Например, котел барабанный с естественной циркуляцией производительностью 210 т/ч с давлением 13,8 МПа и температурой перегрева 565ºС на каменном угле с твердым шлакоудалением обозначают: Е-210-13,8-565 КТ.
5. Основные виды турбин.
5.1. Реактивная турбина.
Турбина, в которой значительная часть потенциальной энергии рабочего тела (напор жидкости, теплоперепад газа или пара) преобразуется в механическую работу в лопаточных каналах рабочего колеса, имеющих конфигурацию реактивного сопла. У современных турбин окружное усилие, вращающее рабочее колесо, создаётся суммарным действием силы, возникающей при изменении направления потока рабочего тела в лопаточных каналах («активный» принцип), и реактивного усилия, развиваемого при возрастании скорости рабочего тела в них («реактивный» принцип). Отношение количества энергии
, преобразованной в рабочих лопатках турбины, ко всему использованному количеству энергии называется степенью реактивности r (при r = 1 турбину называют чисто реактивной, а при r = 0 — чисто активной). Практически все турбины работают с какой-то степенью реактивности, однако реактивными турбинами обычно принято называть только те турбины, в которых по «реактивному» принципу преобразуется не менее 50% всей потенциальной энергии рабочего тела.
Схематический разрез небольшой реактивной турбины: 1 — кольцевая камера свежего пара; 2 — разгрузочный поршень; 3 — соединительный паропровод; 4 — барабан ротора; 5, 8 — рабочие лопатки; 6, 9 — направляющие лопатки; 7 — корпус.
5.2. Многоступенчатая турбина.
Газовая или паровая турбина, в которой расширение пара или газа от начального, до конечного давления, и преобразование его тепловой энергии в механическую работу осуществляется не в одной, а в ряде последовательно расположенных ступеней. Каждая ступень в принципе представляет собой элементарную турбину и состоит из неподвижного соплового аппарата и подвижных рабочих лопаток. В сопловом аппарате происходит расширение пара или газа, на рабочих лопатках — преобразование кинетической энергии потока рабочего тела в работу вращения ротора турбины. Поскольку в каждой ступени используется только часть располагаемого перепада давления и тепла, скорости пара или газа в ней умеренные. Это позволяет получить хороший кпд при относительно невысокой частоте вращения ротора, что необходимо для непосредственного соединения турбины с приводимыми машинами (электрическими генераторами, компрессорами).
Число ступеней при проектировании многоступенчатой турбины выбирают с учётом заданных параметров рабочего тела, кпд и габаритных размеров турбины. С увеличением числа ступеней, улучшается экономичность, т. к. тепловые потери предыдущей ступени используются в последующей, но растут размеры, масса и стоимость турбины. При небольшом (до 10—15) числе ступеней их размещают в одном корпусе (цилиндре), при большем (до 30—40) — в двух или трёх корпусах. Практически все турбины, кроме маленьких вспомогательных, строят многоступенчатыми.
Рис. 1. Схематический продольный разрез активной турбины с тремя ступенями давления: 1 — кольцевая камера свежего пара; 2 — сопла первой ступени; 3 — рабочие лопатки первой ступени; 4 —
сопла второй ступени; 5 — рабочие лопатки второй ступени; 6 — сопла третьей ступени; 7 — рабочие лопатки третьей ступени.
5.3. Парогазотурбинные установки.
Перспективны комбинированные парогазотурбинные установки (ПГУ). В ПГУ топливо и воздух подводятся под давлением в камеру сгорания; продукты сгорания и нагретый воздух поступают в газовую турбину. После первых ступеней газовой турбины продукты сгорания отводятся в промежуточную камеру сгорания, в которой сжигается часть топлива за счёт избыточного кислорода, имеющегося в газах. Из промежуточной камеры сгорания продукты сгорания поступают в последующие ступени турбины, где происходят их дальнейшее расширение и охлаждение. Тепло отработавших газов может быть использовано для подогрева воды или выработки пара низкого давления в парогенераторе. Воздух в камеру сгорания подаётся компрессором, размещенным на одном валу с турбиной. Технология, схема Г. э. отличается простотой, малым количеством вспомогательного оборудования и трубопроводов. Комбинированная ПГУ в нормальном режиме работает по паротурбинному циклу, а для покрытия нагрузок в часы «пик» в энергосистеме переключается на парогазовый цикл. При этом удаётся получать высокие начальные температуры рабочего тела и сравнительно низкие температуры отвода тепла, что и определяет повышенный кпд у ПГУ при некотором снижении капитальных затрат.
Первая в СССР паро-газотурбинная установка общей мощностью 16 Мвт была пущена в 1964 на Ленинградской ГЭС-1 в качестве надстройки над существующей паровой турбиной (30 Мвт). Вслед за этой установкой был создан проект ПГУ мощностью 200 Мвт. В состав паро-газового блока входят: газовая турбина (35—40 Мвт), рассчитанная на температуру газа перед турбиной 700—770°С; серийная паровая турбина (160 Мвт) — на параметры пара 13 Мн/м2 и 565/565 °С; высоконапорный парогенератор производительностью 450 т/ч — на параметры пара 14 Мн/м2 и 570/570°С.
Двухкорпусная паровая турбина (со снятыми крышками): 1 — корпус высокого давления; 2 — лабиринтовое уплотнение; 3 — колесо Кертиса; 4 — ротор высокого давления; 5 — соединительная муфта; 6 — ротор низкого давления; 7 — корпус низкого давления.
5.4. Конденсационная турбина.
Конденсационная турбина (К.т.), паровая турбина, в которой рабочий цикл заканчивается конденсацией пара. Одним из главных преимуществ К.т. по сравнению с любым другим двигателем является возможность получения в одной установке большой мощности (до 1200 Мвт и более). На всех крупных тепловых и атомных электростанциях для привода электрических генераторов применяются конденсационные турбины; кроме того, они применяются в качестве главных двигателей на кораблях, а также для привода доменных воздуходувок и т. д.
Мощные конденсационные турбины выполняются, как правило, многоцилиндровыми с развитой системой регенеративного подогрева питательной воды (до 8—9 отборов пара для подогрева). Конденсационные турбины мощностью свыше 100 МВт обычно бывают с однократным промежуточным перегревом пара.
В СССР первая конденсационная турбина была построена на Ленинградском металлическом заводе в 1924. Это была турбина мощностью 2 МВт, работавшая на паре с начальным давлением 1,1 МН/м2 (11кгс/см2) и температурой 300°С; в 1970 там же была изготовлена одновальная конденсационная турбина мощностью 800 МВт с начальным давлением пара 24 МН/м2 (240 кгс1см2) и температурой 540°С. Создаётся (1973) одновальная конденсационная турбина мощностью 1200 МВт, с промежуточным перегревом пара, не имеющая аналогов в мировом турбостроении.
На атомных электростанциях применяются главным образом конденсационные турбины насыщенного пара. У этих турбин расход пара примерно на 60—65% больше, чем у конденсационных турбин с перегревом пара равной мощности. Чтобы пропустить увеличенные расходы пара через последние ступени, необходимо увеличивать длину лопаток этих ступеней, что может быть достигнуто лишь при снижении частоты вращения конденсационной турбины. Поэтому К. т. мощностью 500 МВт и более выполняются, как правило, не на 3000 об/мин, а на 1500 об/мин. Харьковский турбинный завод им. С. М. Кирова выпускает К. т. насыщенного пара мощностью 220 и 500 МВт на 3000 об/мин и разрабатывает серию К. т. мощностью 500 и 1000 МВт на 1500 об/мин.
Разновидностью К. т. являются турбины с регулируемыми отборами пара для отопительных целей и для производственных нужд. Такие турбины, используемые для совместного производства электроэнергии и тепла, называют теплофикационными и устанавливают на теплоэлектроцентралях. В 1971 Уральским турбомоторным заводом изготовлена первая в мире теплофикационная турбина с промежуточным перегревом пара мощностью 250 МВт, рассчитанная на отпуск тепла в количестве 394 МВт (340 Гкал/ч).
6. Заключение.
Экологические проблемы тепловой энергетики.
За счет сжигания топлива (включая дрова и другие биоресурсы) в настоящее время производится около 90% энергии. Доля тепловых источников уменьшается до 80-85% в производстве электроэнергии. При этом в промышленно развитых странах нефть и нефтепродукты используются в основном для обеспечения нужд транспорта. Например, в США (данные на 1995 г.) нефть в общем энергобалансе страны составляла 44%,а в получении электроэнергии - только 3%. Для угля характерна противоположная закономерность: при 22% в общем энергобалансе он является основным в получении электроэнергии |52%). В Китае доля угля в получении электроэнергии близка к 75%, в то же время в России преобладающим источником получения электроэнергии является природный газ (около 40%), а на долю угля приходится только 18% получаемой энергии, доля нефти не превышает 10%.