Файл: Теоретические основы научной дисциплины безопасность жизнедеятельности.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 152

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.




ТЕХНИКА БЕЗОПАСНОСТИ


Влияние на организм человека электромагнитных полей искусственного происхождения. Виды источников электромагнитных полей искусственного происхож­дения - линии электропередач, радиостанции, радиоаппаратура, радиолокационные стан­ции, средства электронно-вычислительной техники и отображения информации. Мобиль­ная связь. Способы и средства защиты человека от воздействия электромагнитных полей. Экранирующие устройства.

Электромагнитное поле - это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. Представляет собой взаимосвязанные переменные электрическое поле и магнитное поле.

Электромагнитные поля человек не видит и не чувствует и именно поэтому не всегда предостерегается от опасного воздействия этих полей. Электромагнитные излучения оказывают вредное воздействие на организм человека. В крови, являющейся электролитом, под влиянием электромагнитных излучений возникают ионные токи, вызывающие нагрев тканей. При определённой интенсивности излучения, называемой тепловым порогом, организм может не справиться с образующимся теплом.

Нагрев особенно опасен для органов со слаборазвитой сосудистой системой с неинтенсивным кровообращением (глаза, мозг, желудок и др.). При облучении глаз в течение нескольких дней возможно помутнение хрусталика, что может вызвать катаракту.

Кроме теплового воздействия электромагнитные излучения оказывают неблагоприятное влияние на нервную систему, вызывают нарушение функций сердечно-сосудистой системы, обмена веществ.

Длительное воздействие электромагнитного поля на человека вызывает повышенную утомляемость, приводит к снижению качества выполнения рабочих операций, сильным болям в области сердца, изменению кровяного давления и пульса.

Оценка опасности воздействия электромагнитного поля на человека производится по величине электромагнитной энергии, поглощённой телом человека.

Источниками электромагнитных полей являются:

- Линии электропередач (ЛЭП). Интенсивность электрических полей ЛЭП зависит от электрического напряжения. Например, под ЛЭП с напряжением 1 500 кВ напряженность у поверхности земли в хорошую погоду составляет от 12 до 25 кВ/м. При дожде и изморози напряженность ЭП может возрастать до 50 кВ/м.



- Радиостанции и радиоаппаратура. Различные радиоэлектронные средства создают ЭМП в широком диапазоне частот и с различной модуляцией. Наиболее распространенными источниками ЭМП, вносящими существенный вклад в формирование электромагнитного фона как производственной, так и окружающей среды, являются центры радиовещания и телевидения.

- Радиолокационные станции. Радиолокационные и радарные установки имеют обычно антенны рефлекторного типа и излучают узконаправленный радиолуч. Они работают на частотах от 500 МГц до 15 ГГц, однако отдельные специальные установки могут работать на частотах до 100 ГГц и более

- ЭВМ и средства отображения информации. Основными источниками электромагнитных полей в ЭВМ являются: электросетевое питание (частотой 50 Гц) мониторов, системных блоков, периферийных устройств; источники бесперебойного питания (частотой 50 Гц); система кадровой развертки (от 5 Гц до 2 кГц); система строчной развертки (от 2 до 14 кГц); блок модуляции луча электроннолучевой трубки (от 5 до 10 МГц). Также у мониторов с электроннолучевой трубкой и большим экраном (19, 20 дюймов) за счет высокого напряжения создается значительное рентгеновское излучение, что должно рассматриваться как фактор риска для здоровья пользователей.

- Электропроводка. ЭМП в жилых и производственных помещениях формируются как за счет внешних полей, создаваемых линиями электропередачи (воздушными, кабельными), трансформаторами, распределительными электрощитами и другими электротехническими устройствами, так и за счет внутренних источников, таких как бытовая и промышленная электротехника, осветительные и электронагревательные устройства, различные типы проводки электропитания. Повышенные уровни электрических полей наблюдаются только в непосредственной близости от этого оборудования.

- Электротранспорт. Электромагнитная среда в традиционных городских видах транспорта характеризуется неоднозначным распределением значений магнитных полей как в рабочих зонах, так и в салонах вагонов. Как показывают измерения индукции постоянного и переменного магнитных полей, диапазон регистрируемых значений составляет от 0,2 до 1200 мкТл.

- Мобильная связь (приборы, ретрансляторы). Мобильная связь работает на частотах от 400 МГц до 2000 МГц. Источниками ЭМП радиочастотного диапазона являются и базовые станции
, и радиорелейные линии связи, и подвижные станции. У подвижных станций наиболее интенсивные ЭМП регистрируются в непосредственной близости от радиотелефона (на расстоянии до 5 см).

Одним из распространенных средств защиты от воздействия статического элек­тричества является уменьшение генерации электростатических зарядов или их отвод с наэлектризованного материала, что достигается путем заземления металлических электропроводных элементов оборудования, увеличения поверхностей и объемной проводимости диэлектриков, установки нейтрализаторов статического электричества (индукцион­ных, высоковольтных, жидких и др.).

 Эффективным средством защиты является увеличение относительной влажности воздуха до 65-75 %, когда это возможно по условиям технологического процесса.

 В качестве средств индивидуальной защиты применяют антистатическую обувь, антистатический халат, заземляющие браслеты.

Для защиты людей от воздействия электромагнитных полей про­мышленной частоты предусматриваются санитарно-защитные зоны. При проектировании воздушных линий электропередачи напряжением 750-1110 кВ должно предусматриваться их удаление от границ насе­ленных пунктов не менее чем 250-300 м соответственно.

 К средствам коллективной защиты обслуживающего персонала относятся стационарные экраны (различные заземленные металличе­ские конструкции – щитки, козырьки, навесы сплошные или сетчатые, системы тросов) и съемные экраны.

 В качестве средств индивидуальной защиты от электромагнитных полей промышленной частоты служат индивидуальные экранирующие комплекты.

ПОЖАРНАЯ БЕЗОПАСНОСТЬ


Способы и средства тушения пожаров. Принципы прекращения горения. Ог­нетушащие вещества. Вода, химическая и воздушно-механическая пены, водные растворы солей, инертные и негорючие газы, водяной пар, галоидоуглеводородные огнегасительные составы, сухие огнетушащие порошки. Технические средства пожаротушения
Для прекращения горения необходимо: не допустить проникновения в зону горения окислителя (кислорода воздуха), а также горючего вещества; охладить эту зону ниже температуры воспламенения (самовоспламенения); разбавить горючие вещества негорючими; интенсивно тормозить скорость химических реакций в пламени (ингибированием); механически срывать (отрывать) пламя.

На этих принципиальных методах и основаны известные способы и приемы тушения пожаров.

В практике тушения пожаров наибольшее распространение получили следующие принципы прекращения горения:

  • изоляция очага горения от воздуха или снижение путем разбавления воздуха негорючими загами концентрации кислорода до значения, при котором не может происходить горение;

  • охлаждение очага горения ниже определенных температур;

  • интенсивное торможение (ингибирование) скорости химической реакции в пламени;

  • механический срыв пламени в результате воздействия на него сильной струи газа и воды;

  • создание условий огнепреграждения, т.е. таких условий, при которых пламя распространяется через узкие каналы.

К огнегасительным веществам относятся: вода, химическая и воздушно-механическая пены, водные растворы солей, инертные и негорючие газы, водяной пар, галоидоуглеводородные огнегасительные составы и сухие огнетушащие порошки.

  • Вода. Огнетушащая способность воды обуславливается охлаждающим действием, разбавлением горючей среды образующимися при испарении парами и механическим воздействием на горящее вещество, т.е. срывом пламени. Охлаждающее действие воды определяется значительными величинами ее теплоемкости и теплоты парообразования. Разбавляющее действие, приводящее к снижению содержания кислорода в окружающем воздухе, обуславливается тем, что объем пара в 1700 раз превышает объем испарившейся воды

  • Пена. Пены применяют для тушения твердых и жидких веществ, не вступающих во взаимодействие с водой. Огнетушащие свойства пены определяют ее кратностью - отношением объема пены к объему ее жидкой фазы, стойкостью, дисперсностью и вязкостью. На эти свойства пены помимо ее физико-химических свойств оказывают влияне природа горючего вещества, условия протекания пожара и подачи пены.

  • Газы. При тушении пожаров инертными газообразными разбавители используют двуокись углерода, азот, дымовые или отработавшие газы, пар, а также аргон и другие газы. Огнетушащие действие названных составов заключается в разбавлении воздуха и снижении в нем содержания кислорода до концентрации, при которой прекращается горение. Огнетушащий эффект при разбавлении указанными газами обуславливается потерями теплоты на нагревание разбавителей и снижением теплового эффекта реакции. Особое место среди огнетушащих составов занимает двуокись углерода (углекислый газ), которую применяют для тушения складов ЛВЖ, аккумуляторных станций, сушильных печей, стендов для испытания электродвигателей и т.д.

  • Ингибиторы. Все описанные выше огнетушащие составы оказывают пассивное действие на пламя. Более перспективны огнетушащие средства, которые эффективно тормозят химические реакции в пламени, т.е. оказывают на них ингибирующее воздействие. Наибольшее применение в пожаротушении нашли огнетушащие составы - ингибиторы на основе предельных углеводородов, в которых один или несколько атомов водорода замещены атомами галоидов (фтора, хлора, брома).