Файл: контроль качества сварных соединений.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 212

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Рентген-видиконы сочетают в себе световую передающую телевизионную камеру (видикон) с чувствительным к рентгеновскому излучению фотопроводящим слоем на основе оксида цинка, оксида свинца, аморфного селена, сернистой сурьмы и других соединений, на несенного на алюминиевый диск. Под действием ионизирующего излучения с фотопроводящего слоя испускаются фотоэлектроны, которые ускоряются электрическим полем и регистрируются катодом трубки. Далее полученный сигнал передается через телевизионный блок связи на приемную трубку, где происходит преобразование электронного изображения в световое.

Увеличение рентген-видикона составляет 2-50x, разрешающая способность 30- 50лин/мм. Недостатки рентген-видикона: значительная инерционность и низкий динамический диапазон, малая площадь рабочего поля, невозможность применения для регистрации фотонов в диапазоне высоких энергий из-за малой толщины входного экрана.

Если радиоскопический метод контроля удовлетворяет требованиям технических условий по выявляемости дефектов, он может быть введен вместо радиографического метода, если нет, то может быть использован в сочетании с радиогрфическим и применяется для предварительного контроля.

Радиометрический метод. Он основан на просвечивании изделий ионизирующим излучением с преобразованием плотности потока или спектрального состава прошедшего излучения в пропорциональный электрический сигнал. Любая система радиометрического контроля содержит источник излучения, детектор, схему обработки и регистрации информации.

В качестве источников излучения применяют в основном гамма-изотопы, ускорители и реже рентгеновские аппараты. Детекторами излучения являются в основном сцинтилляционные кристаллы с фотоэлектронными умножителями (ФЭУ), реже ионизационные камеры и газоразрядные счетчики. Узкий (коллимированный) пучок ионизирующего излучения перемещается по контролируемому объекту, последовательно просвечивая его участки. Излучение, прошедшее через объект, регистрируется счетчиком, на выходе которого образуется электрический сигнал с величиной, пропорциональной интенсивности поступающего излучения. Электрический сигнал, прошедший усилитель, регистрируется устройством, которым может быть самописец, осциллограф, миллиамперметр. При наличии дефекта регистрирующее устройство отмечает изменение интенсивности. Радиометрические методы позволяют определить две координаты дефекта: протяженность и его лучевой размер. Объемные дефекты определяются с точностью 3-5%.


Преимущества радиометрии: высокая чувствительность (0,3-3,0%), возможность бесконтактного контроля, сравнительно(с радиографией) высокая производительность.

Недостатки: необходимость одновременного перемещения на одинаковом расстоянии по разные стороны от объекта источника и детектора; невозможность определения формы и глубины дефекта; влияние рассеянного излучения.

Томография. Сущность метода заключается в получении резкого изображения только тех частей объекта, которые находятся в тонком (не более 2мм) слое на определенной глубине или в нескольких тонких слоях, разделенных интервалами заданной толщины (шагом томографии).

Рис.1.15. Схема образования томографического изображения:

I – рентгеновская трубка; II – объект контроля; III – кассета с пленкой
Этого добиваются, например, синхронным перемещением (рис.1.15) рентгеновской трубки (А1→А3) и кассеты с экранами и пленкой (01→03) относительно пространственного центра качания 0. В результате получают изображение выделенного слоя MN, расположенного в плоскости, проходящей через центр качания. Это изображение представляет собой геометрическое место точек выделенного слоя, тени которых неподвижны по отношению к пленке.

Таким образом, в томографии используют эффект динамической нерезкости изображения. При этом методе синхронное движение источника и пленки относительно объекта позволяет размыть изображения неанализируемых дефектов или слоя, изображения которых в обычно принятом методе радиографии накладываются друг на друга, и более резко выделить изображение требуемого для обнаружения дефекта или слоя. Минимальная толщина выделяемого слоя составляет примерно удвоенную ширину (диаметр в плоскости изображения) дефекта и равна 1,5мм. Стандартным регистратором служит экранная пленка РН-1 в сочетании с усиливающим люминесцентным экраном.

В настоящее время широко используют вычислительную томографию. Она реализует возможность решения обратной задачи интроскопии - по объемной информации об интенсивности прошедшего в различных направлениях излучения найти распределение линейного коэффициента ослабления, связанного с плотностью материала внутри контролируемого объекта.

Пока нет качественных и надежных трехмерных индикаторов, поэтому применяют послойные изображения при поперечном сканировании объекта коллимированным пучком (томограммы). Томограммы с обычным рентгеновским

изображением имеют гораздо большую информативность, поскольку детально показывают внутреннюю геометрическую структуру, распределение плотности и элементного состава материалов, что невозможно при обычной радиографии.

Повышенный объем информации в рентгеновской вычислительной томографии получается благодаря применению большого числа (250-500) первичных преобразователей, непрерывного вращения системы преобразователь-детектор вокруг объекта на 3600.

Блок-схема вычислительного томографа представлена на рис.1.16.

Рис.1.16. Функциональная схема рентгеновского вычислительного томографа
При вычислительной томографии предъявляются весьма жесткие требования к генераторному блоку. Выходящий рентгеновский пучок должен иметь как можно меньший фокус, быть по возможности монохроматичным и иметь постоянную интенсивность излучения. С этой целью в генераторный блок после рентгеновского излучателя РИ устанавливают формирователь пучка ФП, коллиматор, компенсаторы и фильтры. Для стабилизации напряжения сети применяют высоковольтный блок питания ВСБП, а охлаждение генераторного блока производят системой охлаждения СО. В процессе контроля механизм перемещения обеспечивает непрерывное движение с постоянной скоростью контролируемого объекта КО и комплекта преобразователей КП. Механизм перемещения представляет сложную систему, включающую точный приводной блок, блоки стабилизации параметров движения, устройство крепления и подачи контролируемого объекта.

Комплект первичных преобразователей представляет собой матрицу, состоящую из большого числа (до 2000 шт) измерительных преобразователей и включающую от 1 до 4 опорных преобразователей. Основными требованиями к преобразователям являются высокие метрологические характеристики (постоянная чувствительность, линейность характеристик, большой динамический диапазон и др.) и их идентичность. Чаще всего в качестве преобразователей используют сцинтилляционные кристаллы вместе с фотоэлектронным умножителем и полупроводниковым фотоэлементом.

Сигналы от преобразователей поступают в многоканальный усилитель МУ и после фильтрации и усиления подаются в аналогоцифровой преобразователь АЦП
, а после их оцифровки через интерфейс ИФ поступают для последующей обработки в ЭВМ. Взаимодействие всех блоков томографа осуществляет мини-ЭВМ.

Микроконтролер МК управляет работой генераторного блока, механизма перемещения и передачей информации от КП к ЭВМ в режимах, задаваемых оператором с пульта управления ПУ. ЭВМ редактирует и упорядочивает сведения, полученные по каждому из направлений, устраняет ошибки и погрешности и обрабатывает их с учетом координат излучения для восстановления изображения в определенном сечении. Спецпроцессор СП осуществляет операцию фильтрации сверткой. Обработанные данные поступают в накопители на магнитных дисках или лентах НМ. Полученные данные могут выводиться либо на дисплей ДИС, либо на цифропечатающее устройство ПЕЧ.

Томографы дают возможность решать многие задачи неразрушающего контроля - как задачи интроскопии, так и количественной оценки параметров различных объектов. В настоящее время их широко применяют для контроля объектов с небольшим затуханием излучения, в частности для контроля композитов, углепластиков, резины и т.п. толщиной до 20мм и размером до 1,5м при разрешении по плотности 0,2%. Следует отметить, что при использовании томографов относительная чувствительность контроля при выявлении объемных дефектов в пластмассах составляет 0,2-0,4%, тогда как для радиографии этот показатель равен 3-4%. С помощью томографов уверенно обнаруживаются трещины с раскрытием 0,01-0,02мм, что на порядок выше, чем при обычной радиографии. Чтобы сохранить разрешающую способность при контроле объектов с разными размерами, изменяют расстояние lко. Проблема контроля более габаритных объектов связана с генераторным блоком томографа и объемом памяти ЭВМ.

Радиационная безопасность.

Требования радиационной безопасности обслуживающего персонала регламентируются следующими документами: «Нормы радиационной безопасности» (НРБ-99) и «Основные санитарные правила обеспечения радиационной безопасности» (СП 2.6.1.799-99). Основная задача — это защита человека от вредного воздействия ионизирующих излучений, что обеспечивается предельно-допустимыми дозами (ПДД) внешнего и внутреннего облучения.

НРБ-99 применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения.

Устанавливаются следующие категории облучаемых лиц:

  • персонал (группы А и Б);

  • все население, включая лиц из персонала, вне сферы и условий их производственной деятельности.


Таблица

Основные пределы доз



Нормируемые величины

Пределы доз

Персонал (группа А)

Население

Эффективная доза

20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год

1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год

Эквивалентная доза за год

в хрусталике глаза

коже

кистях и стопах



150 мЗв

500 мЗв

500 мЗв



15 мЗв

50 мЗв

50 мЗв

Примечания: Допускается одновременное облучение до указанных пределов по всем нормируемым величинам. Основные пределы доз, как и все остальные уровни облучения персонала группы Б, равны ¼ значений для персонала группы А.

Основные пределы доз облучения не включают в себя дозы от природного и медицинского облучения, а также дозы вследствие радиационных аварий.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) – 1000 мЗв, а для населения за период жизни (70 лет) – 70 мЗв.

Взвешивающие коэффициенты для тканей и органов при расчете эффективной дозы:

Гонады ..........................................................................................................0,20

Костный мозг (красный) .............................................................................0,12

Толстый кишечник ......................................................................................0,12

Легкие ...........................................................................................................0,12

Желудок ........................................................................................................0,12

Мочевой пузырь ...........................................................................................0,05

Грудная железа .............................................................................................0,05

Печень ...........................................................................................................0,05

Пищевод ........................................................................................................0,05

Щитовидная железа ......................................................................................0,05

Кожа ...............................................................................................................0,01

Клетки костных поверхностей ....................................................................0,01

Остальное .......................................................................................................0,05

Взвешивающие коэффициенты для отдельных видов излучения:

Фотоны любых энергий ..................................................................................1

Электроны и мюоны любых энергий ............................................................1