Файл: Тема Парная линейная регрессия.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 27

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Продолжение таблицы 1

Номер региона

у-











1

1,7

2,97

121,629

86,583

2,84

2,47

2

-1,0

1,10

0,279

2,487

0,08

1,72

3

2,2

4,61

23,315

7,189

0,24

0,51

4

-0,1

0,01

32,165

31,346

1,03

0,19

5

-3,2

10,19

10,702

0,006

0,00

5,87

6

-1,7

2,88

0,451

1,051

0,03

2,98

7

2,1

4,58

45,852

79,399

2,61

4,12

Сумма

0

26,33

234,39

208,06

6,83

20,86

Среднее значение

-

-

-

-

-

-


Однако, оперируя средними величинами, мы можем столкнуться с ошибками округления. Действительно, . Соответственно не совпадает и величина параметра , т.е.

При решении с помощью компьютера уравнение регрессии составило: .

Величина коэффициента регрессии означает, что с ростом заработной платы на 1 тыс. руб. доля расходов на покупку продовольственных товаров снижается в среднем на 5.5 % - х пункта.

  1. Оцените тесноту связи между признаками.

Линейное уравнение регрессии дополняется расчетом линейного коэффициента корреляции:

или .

Так как то , что означает тесную обратную связь рассматриваемых признаков.

  1. Рассчитайте коэффициент детерминации.

Коэффициент детерминации составит: , т.е. вариация у на 88,8 % объясняется вариацией х. На долю прочих факторов, не учитываемых в регрессии, приходится 11,2 %.

  1. Проверьте значимость оценки коэффициента регрессии с помощью критерия Стьюдента при уровне значимости α=0,05.

Оценку статистической значимости коэффициента регрессии проведем с помощью t - критерия Стьюдента.

Выдвигаем две гипотезы:

Н0 – коэффициент регрессии является статистически незначимым, т.е. b=0;

Н1 – коэффициент регрессии статистически значим, т.е. b≠0.

Определим стандартную ошибку для коэффициента регрессии mb:

.

Далее вычисляем значения t – критерия Стьюдента:

.

Фактическое значение t – критерии превосходит табличное значение на 5 %-м уровне значимости при числе степеней свободы

=5: tтабл = 2,57. Поэтому гипотеза Н0 отклоняется, т.е. b отличается от нуля не случайно и коэффициент регрессии является статистически значимым.

  1. Постройте доверительный интервал для коэффициента регрессии.

Рассчитаем доверительный интервал для коэффициента регрессии, для чего определим предельную ошибку для параметра b.

.

Доверительные интервалы: , т.е.



Анализ верхней и нижней границ доверительного интервала приводит к выводу о том, что с вероятностью 95% коэффициент регрессии, находясь в указанных границах, не принимает нулевых значение, т.е. не является статистически незначимым и существенно отличен от нуля.

  1. Составить таблицу дисперсионного анализа.

Результаты дисперсионного анализа приведены в таблице 2.

Таблица 2. – Таблица дисперсионного анализа

Вариация результата

Число степеней свободы

Сумма квадратов отклонений

Дисперсия на одну степень свободы

F - критерий

факт.

табл.

Общая

6

234,39










Факторная

1

208,06

208,06

39,5

6,61

Остаточная

5

26,33

5,27









  1. Оцените с помощью F – критерия Фишера-Снедекора значимость уравнения линейной регрессии.


В силу того, что Fфакт=39,5> Fтабл=6,61, гипотеза о случайности различий факторной и остаточной дисперсий отклоняется. Эти различия существенны, статистически значимы, уравнение значимо, показатель тесноты связи надежен и отражает устойчивую зависимость расходов на покупку продовольственных товаров от среднемесячной заработной платы.

8. Рассчитайте, каковы будут расходы на покупку продовольственных товаров, если среднемесячная заработная плата составит 8 тыс. руб.

Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если примем прогнозное значение среднемесячной заработной платы х=8, то точечный прогноз расходов составит: % - х пункта.

Чтобы получить интервальный прогноз, найдем стандартную ошибку предсказываемого значения расходов .

;

где - стандартная ошибка регрессии.





Предельная ошибка прогнозируемого расхода составит:

.

Доверительный интервал прогнозируемого расхода составит:

,

т.е. при среднемесячной заработной плате, равной 8 тыс. руб., расходы на покупку продовольственных товаров составят не меньше чем

% - х пункта

и не больше чем

% - х пункта.

9. Рассчитайте средний коэффициент эластичности.

Средний коэффициент эластичности для линейной регрессии рассчитывается по формуле:

.

Таким образом, получаем, что с ростом среднемесячной заработной платы на 1 % расходы на покупку продовольственных товаров снижаются на 4,14 %.

10. Определить среднюю ошибку аппроксимации.

Средняя ошибка аппроксимации находится как средняя арифметическая простая из индивидуальных ошибок:

,

(см. последнюю графу расчетной таблицы 1).


Ошибка аппроксимации показывает хорошее соответствие расчетных и фактических данных: среднее отклонение составляет 2,98 %.