Файл: Тема Парная линейная регрессия.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 28

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Тема 2. Множественная линейная регрессия

Имеются данные по 30 территориям России

Признак

Среднее значение

Среднее квадратическое отклонение

Парный коэффициент корреляции

у

433,5

61,44



х1

254,9

25,86



х2

33,5

0,58





  1. Построить уравнение множественной линейной регрессии в стандартизованном масштабе и в естественной форме.

Линейное уравнение множественной регрессии у от х1 и х2 имеет вид: . Для расчета его параметров применим метод стандартизации переменных и построим искомое уравнение в стандартизованном масштабе: . Расчет β – коэффициентов выполним по формулам



.

Получим уравнение .

Для построения уравнения в естественной форме рассчитаем и , используя формулы для перехода от βi к :

;
;

; .

Значение a определим из соотношения





  1. Рассчитайте частные коэффициенты эластичности.

Рассчитаем средние коэффициенты эластичности для определения относительной силы влияния х1 и х2 на у:



; .

С увеличением средней заработной платы х1 на 1% от ее среднего уровня средний душевой доход у возрастет на 1,16 % от своего среднего уровня; при повышении среднего возраста безработного х2 на 1 % среднедушевой доход у снижается на 0,93 % от своего среднего уровня. Очевидно, что сила влияния средней заработной платы х1 на средний душевой доход у оказалась большей, чем сила влияния среднего возраста безработного х2. К аналогичным выводам о силе связи приходим при сравнении модулей значений β1 и β2.

  1. Рассчитать линейные коэффициенты частной корреляции и коэффициент множественной корреляции.

Линейные коэффициенты частной корреляции здесь рассчитываются по рекуррентной формуле:

;

.

При сравнении значений коэффициентов парной и частной корреляции приходим к выводу, что из-за слабой межфакторной связи ( ) коэффициенты парной и частной корреляции отличаются незначительно: выводы о тесноте и направлении связи на основе коэффициентов парной и частной корреляции совпадают:

; ;

; ;

.

Расчет линейного коэффициента множественной корреляции выполним с использованием коэффициентов и βi:



Зависимость у от х1 и х2 характеризуется как тесная, в которой 72 % вариации среднего душевого дохода определяются вариацией учтенных в модели факторов: средней заработной платы и среднего возраста безработного. Прочие факторы, не включенные в модель, составляют соответственно 28 % от общей вариации у.

  1. Оцените значимость уравнения регрессии в целом с помощью F – критерия Фишера.

Общий F – критерий проверяет гипотезу Н0 о статистической значимости уравнения регрессии и показателя тесноты связи (R2=0):

;

.

Сравнивая и , приходим к выводу о необходимости отклонить гипотезу Н0, т.к. < . С вероятностью 1-α=0,95 делаем заключение о статистической значимости уравнения в целом и показателя тесноты связи , которые сформировались под неслучайным воздействием факторов х1 и х2.