Файл: Решение задачи Дирихле методом МонтеКарло Введение.doc

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 22.11.2023

Просмотров: 48

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Покажем применение метода сеток для построения решения задачи Дирихле

при и при , (1)

где – заданная непрерывная функция, причем для простоты рассмотрим лишь случай квадратной сетки. Будем предполагать, что область ограничена простым замкнутым кусочно-гладким контуром .

Выбрав шаг , построим квадратную сетку

с таким расчетом, чтобы узлы сетки принадлежали области , или отстояли от ее границы на расстоянии меньшем, чем .

Точки (узлы) называются соседними, если они удалены друг от друга в направлении оси или оси на расстояние, равное шагу сетки . Узел сетки называется внутренним, если он принадлежит области , а все четыре соседних с ним узла – множеству ; в противном случае он называется граничным (например, узлы сетки ) (рис. 1, Приложение А – внутренние узлы обозначены светлыми кружками, а граничные – темными кружками и темными треугольниками).

Граничный узел сетки называется узлом первого рода, если он имеет соседний внутренний узел этой сетки (например, узел – рис. 1, Приложение А); в противном случае граничный узел называется узлом второго рода (узел – рис. 1, Приложение А). Внутренние узлы и граничные узлы первого рода сетки называются расчетными точками. Граничные узлы второго рода не входят в вычисление и могут быть изъяты из сетки (рис. 1, Приложение А – граничные узлы второго рода обозначены темными треугольниками).

Относительно сетки предположим, что множество ее расчетных точек «связное», т. е. любые две расчетные точки можно соединить цепочкой узлов, каждые два смежных элемента которой являются соседними узлами. Кроме того, будем считать многоугольную сеточную область выбранной так, чтобы ее геометрическая граница возможно ближе примыкала к границе области . Заметим, что узловые точки контура могут лежать внутри, так и вне .

Значение искомой функции в точках обозначим через . Для каждой внутренней точки сетки заменяем дифференциальное уравнение (1) конечно-разностным уравнением

, (2)

где – расчетные точки.

В граничных узлах первого рода сетки полагаем

, (3)

где – ближайшая к точка границы .

Система (2) является неоднородной линейной системой, причем число неизвестных (т. е. число внутренних узлов сетки) равно числу уравнений. Система (2) всегда совместна и имеет единственное решение. Чтобы доказать это, достаточно убедиться в том, что соответствующая однородная система, очевидно, формально может быть записана в виде системы (2), с той лишь разницей, что значение функции на границе следует положить тождественно равным нулю: .


Однородная система (2) всегда совместна, так как эта система имеет тривиальное решение . Покажем, что однородная система (2) не может иметь решения . Пусть, например, для некоторого решения одно из ее неизвестных . Для определенности будем считать . Обозначим через наибольшую компоненту рассматриваемого решения, т. е. положим

(4)

для всех узлов сетки . В силу неравенства (4) будем иметь

. (5)

На основании системы (2) получаем

. (6)

Учитывая неравенство (4), заключаем, что

.

Ни одно из последних четырех неравенств не является строгим, так как если бы это имело место, то, складывая все четыре неравенства и учитывая формулу (6), мы получили бы .

Поэтому

. (7)

Проводя аналогичные рассуждения для точек сетки с ближайшей точкой , где положено

.

Таим образом, из цепи равенств (7) имеем , что противоречит неравенству (5).

Так, однородная система (2) не может иметь положительных решений. Аналогично доказывается, что эта система не может иметь отрицательных решений. Следовательно, для каждого решения, и, значит, неоднородная система (2) совместна и имеет единственное решение.

Решив систему (2), получим приближенные значения искомой функции в узлах сеточной области . Тем самым будет найдено приближенное численное решение задачи Дирихле для области . Можно показать, что в общем случае погрешность приближенного решения имеет порядок .

2.3 Понятие о решение задачи Дирихле для уравнения Лапласа методом Монте-Карло

Пусть на плоскости дана область с кусочно-гладкой границей . В области построим квадратную сетку с шагом :

, (1)

Мы предполагаем, что сетка состоит из внутренних узлов и граничных узлов первого рода. Граничные узлы сетки образуют ее границу. Грубо говоря, граница представляет собой линейный ряд точек , аппроксимирующий криво-криволинейную границу области с точностью до .

Представим себе частицу , которая совершает равномерное случайное блуждание по узлам сетки (1). А именно, находясь во внутреннем узле сетки , эта частица за один переход с одной и той же вероятностью, равной 1/4, может переместиться в один из четырех соседних узлов: или в (шаг влево), или в (шаг вправо), или в (шаг вниз), или в (шаг вверх), причем каждый такой единичный переход совершенно случаен и не зависит от положения частицы и ее прошлой истории. Будем считать, что блуждание частицы заканчивается, как только эта частица попадет на границу ; в этом смысле граница представляет собой «поглощающий экран». Можно доказать, что с вероятностью, равной 1, блуждание точки через конечное число шагов заканчивается на границе.



Если частица начала свое блуждание с фиксированной внутренней точки сетки , то конечная совокупность последовательных положений этой частицы: где и , называется траекторией частицы (с шагами) или историей блуждания.

Равномерное случайное блуждание частицы на плоскости можно организовать с помощью равномерно распределенной последовательности одноразрядных случайных чисел, принимающих значения. Для этого, например, достаточно производить розыгрыш, т. е. случайную выборку из чисел , придерживаясь инструкции, указанной в таблице 1 (Приложение B); причем числа 8 и 9 переигрываются.

Случайные числа берутся из готовых таблиц или вырабатываются электронной машиной. Последний способ при работе на счетной машине предпочтительнее, так как он позволяет не загружать сильно память машины.

Пусть в точках границы Г области G определена некоторая функция . Перенесем эти значения на границу сетки . Например, для каждого граничного узла определим ближайшую по горизонтали (или вертикали) точку и положим

.

Для краткости введем обозначение

.

Пусть – вероятность того, что траектория частицы, вышедшей из узла сетки , закончится в граничном узле . Так как блуждание точки неизбежно заканчивается на границе в первой же точке выхода ее на границу, то

, (2)

где суммирование распространяется на все точки границы , причем

(3)

где – граничный узел.

Составим сумму

, (4)

где точка пробегает всю границу . Если функцию рассматривать как случайную величину, принимающую значения на границе , то сумма (4) представляет собой математическое ожидание (среднее значение) функции на границе для траекторий, начинающихся в точке («премия за выход на границу» из начальной точки ). Частица, начавшая свое случайное блуждание из внутреннего узла , после первого шага с вероятностью, равной 1/4, попадает в один из четырех соседних узлов. Поэтому случайные блуждания, начинающиеся в узле , в зависимости от вида траекторий распадаются на четыре категории новых случайных блужданий:

По формуле полной вероятности имеем

(5)

Отсюда, умножая обе части равенства (5) на граничные значения и суммируя по всем возможным значениям и , на основании формулы (4) получим

. (6)

Кроме того, в силу формулы (3) имеем

, (7)

если точка .

Рассмотрим теперь задачу Дирихле об отыскании функции , гармонической области и принимающей на ее границе заданные непрерывные значения . Согласно методу сеток эта задача сводится к нахождению значений искомой функции во внутренних узлах некоторой сетки при условии, что значения в граничных узлах известны и равны . Неизвестные определяются из системы линейных уравнений


(8)

Сравнивая формулы (8) с формулами (6), (7), мы усматриваем, что они совпадают с точностью до обозначений. Следовательно, искомые неизвестные можно рассматривать как математические ожидания . Величины допускают экспериментальное определение. Рассмотрим достаточно большое число равномерных случайных блужданий частицы по узлам сетки , исходящих из фиксированного узла и заканчивающихся на границе . Пусть соответствующие точки выхода частицы на границу . Заменяя математическое ожидание эмпирическим математическим ожиданием, будем иметь

. (9)

Формула (9) дает статистическую оценку величины и может быть применена для приближенного решения задачи Дирихле. Метод решения задач, основанный на использовании случайных величин, получил общее название метода Монте-Карло.

Заметим, что с помощью формулы (9) можно непосредственно найти приближенное значение решения задачи Дирихле в единственной фиксированной точке сетки , не зная решения задачи для остальных точек сетки. Этим обстоятельством метод Монте-Карло для задачи Дирихле резко отличается от обычных стандартных способов решения этой задачи.

Интересно отметить, что вероятность , в силу формулы (4), представляет собой аналог функции Грина для задачи Дирихле в области. Эта величина может быть найдена экспериментально на основании формулы (9), если задать следующие граничные условия:

.

Построив такую функцию Грина, мы получаем возможность, применяя формулу (9), просто

находить приближенное решение задачи Дирихле для области данной границей при любых граничных значениях .

Недостатком рассмотренного варианта метода Монте-Карло для задачи Дирихле является слабая сходимость по вероятности при эмпирического математического ожидания

к математическому ожиданию . Чтобы устранить это неблагоприятное обстоятельство, используют различные модификации случайных блужданий. Кроме того, при решении задачи полезно учитывать также, что блуждание частицы , начинающееся в точке

автоматически является случайным блужданием частицы, начинающимся в любой промежуточной точке траектории этой частицы.

2.4 Метод «блуждания» по сферам

Укажем другой метод Монте-Карло для решения задачи Дирихле для уравнения Лапласа, не связанный с разностными уравнениями. Пусть задана ограниченная связная область и точка . Определим случайную траекторию следующим образом: положим ; далее, если точка известна, то построим окружность произвольного радиуса , расположенную внутри , и на этой окружности выберем случайную точку (рис. 2, Приложение C).


Таким образом, , где , и угол равномерно распределен в интервале .

Приведем теорему: если функция удовлетворяет в области уравнению Лапласа

, (1)

то при каждом и при любых математическое ожидание равно значению в начале траектории.

Доказательство. Придадим более точный смысл утверждению о произвольности радиуса . Будем считать, что задана некоторая плоскость , которая тождественно равна нулю при всех , превосходящих минимальное расстояние от до границы , а также при ; случай также допускается; и выбор осуществляется в соответствии с плотностью . Пусть – плотность распределения точки в . Тогда математическое ожидание величины равно

.

По теореме о среднем значении гармонической функции

.

Поэтому

.

При точка и . Применяя индукцию, получим утверждение теоремы.

Построение траекторий рассмотренного типа в трехмерном случае иногда называют блужданием по сферам.

Приведенную выше траекторию можно использовать для приближенного решения задачи Дирихле. Пусть на границе области задана ограниченная функция . Обозначим через искомое решение, удовлетворяющее внутри уравнению (1) и обращающееся в при .

Фиксируем достаточно малую окрестность границы (рис. 3, Приложение D). Чтобы вычислить , будем строить траектории вида до тех пор, пока случайная точка не попадет в . Пусть – ближайшая к точка границы . Можем считать, что значение случайной величины приближенно равно . Построив траекторий такого типа, получим значения , по которым оценивается искомое решение

. (2)

Замети, что сходимость по вероятности

, (3)

когда не вытекает из теоремы Хинчина, говорящей о том, что последовательность одинаково распределенных независимых величин, у которых существуют математические ожидания, подчиняется закону больших чисел, так как в сумме (3) фигурируют различных случайных величин, различающихся правилами выбора Можно, однако воспользоваться другой формой закона больших чисел – теоремой Чебышева:

Если величины независимы и существует и , то при

(Доказательство этой теоремы легко получить, применяя к величине неравенство Чебышева – ).

В нашем случае все , а дисперсии , где . В самом деле, как известно, максимум и минимум гармонической функции достигаются на границе области, так что при всех .

Такой метод расчета считается более быстрым, чем метод использования разностных уравнений, так как вдали от границы позволяет делать большие шаги . Обычно рекомендуют выбирать максимально возможные радиусы .