Добавлен: 22.11.2023
Просмотров: 145
Скачиваний: 7
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
2.Молекулярные часы………………………………………………………...7
3.Атомные цезиевые часы…………………………………………………..13
4.Астрономические часы с квантовым генератором………………...……16
5.Передача точного времен………………………..…………………………21
Заключение………………………………………………………………..25
Список литературы…………………………………………………………......27
Существуют определённые часы и методы хранения и передачи точного времени.
1.Маятниковые и кварцевые астрономические часы
МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ И НАУКИ
КАБАРДИНО-БАЛКАРСКОЙ РЕСПУБЛИКИ
ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ
«КАБАРДИНО-БАЛКАРСКИЙ ТОРГОВО-ТЕХНОЛОГИЧЕСКИЙЙ КОЛЛЕДЖ»
Индивидуальный проект на тему:
<<Хранение и передача точного времени>>
по дисциплине «Астрономия»
Профессия СПО:43.01.09 «Повар - кондитер»
Выполнил студент группы ПК1\2
Баташев Кязим Сюлеменович
Руководитель:преподаватель общественных дисциплин:
Яценко Оксана Михайловна
Работа защищена
« » 2023г. с оценкой
Содержание
Введение…………………………………………………………………………..3
1.Маятниковые и кварцевые астрономические часы………………………..4
2.Молекулярные часы………………………………………………………...7
3.Атомные цезиевые часы…………………………………………………..13
4.Астрономические часы с квантовым генератором………………...……16
5.Передача точного времен………………………..…………………………21
Заключение………………………………………………………………..25
Список литературы…………………………………………………………......27
Введение
Служба времени, совокупность специализированных лабораторий научно-исследовательских институтов, обсерваторий и других учреждений (или одна из них), осуществляющих определение и хранение времени передачу информации о нём заинтересованным потребителям Задача службы точного времени состоит в определении, хранении и распространении точного времени. Вторая задача службы точного времени решаются научно-техническими средствами по создание часов и соответствующих им по точности средств связиСуществуют определённые часы и методы хранения и передачи точного времени.
1.Маятниковые и кварцевые астрономические часы
Получением моментов времени решается только первая задача службы времени. Следующей задачей является хранение точного времени в промежутках между астрономическими его определениями. Эта задача решается с помощью астрономических часов.
Для получения большой точности отсчета времени при изготовлении астрономических часов по возможности учитываются и устраняются все источники погрешности, а для их работы создаются наиболее благоприятные условия.
В часах самой существенной их частью является маятник. Пружины и колесики служат передаточным механизмом, стрелки - указывающим, а отмеряет время маятник. Поэтому в астрономических часах стараются создать возможно лучшие условия для его работы: сделать постоянной температуру помещения, устранить толчки, ослабить сопротивление воздуха и, наконец, сделать возможно меньшей механическую нагрузку.
Для обеспечения высокой точности астрономические часы помещаются в глубокий подвал, защищенный от сотрясений, В помещении круглый год поддерживается постоянная температура. Для уменьшения сопротивления воздуха и устранения влияния изменений атмосферного давления маятник часов помещается в кожух, в котором несколько понижено давление воздуха.
Весьма высокой точностью обладают астрономические часы с двумя маятниками (часы Шорта), из которых один - несвободный, или "рабский",- связан с передаточными и указывающими механизмами, а сам управляется другим - свободным маятником, не связанным ни с какими колесами и пружинами
Свободный маятник помещается в глубоком подвале в металлическом футляре. В этом футляре создается пониженное давление. Связь свободного маятника с несвободным осуществляется через два небольших электромагнита, вблизи которых он качается. Свободный маятник управляет "рабским" маятником, заставляя его качаться в такт с собой.
Можно добиться очень малой погрешности показаний часов, но нельзя ее устранить полностью. Впрочем, если часы идут неверно, но заранее известно, что они спешат или отстают на определенное число секунд в сутки, то не представляет большого труда по таким неправильным часам вычислить точное время. Для этого достаточно знать, каков ход часов, т. е. на сколько секунд в сутки они спешат или отстают. В течение месяцев и лет для данного экземпляра астрономических часов составляются поправочные таблицы. Стрелки астрономических часов почти никогда не показывают время точно, но с помощью поправочных таблиц вполне удается получать отметки времени с точностью в тысячные доли секунды.
К сожалению, ход часов не остается постоянным. При изменении внешних условий - температуры помещения и давления воздуха,- вследствие всегда имеющейся неточности изготовления деталей и срабатывания отдельных частей одни и те же часы с течением времени могут менять свой ход. Изменение, или вариация, хода часов является главным показателем качества их работы. Чем меньше вариация хода часов, тем часы лучше.
Таким образом, хорошие астрономические часы могут быть слишком торопливыми и чрезмерно медлительными, могут убегать вперед или отставать даже на Десятые доли секунды в сутки, и все же с их помощью можно надежно хранить время и получать достаточно точные показания, если только характер их поведения постоянен, т. е. мала суточная вариация хода.
В маятниковых астрономических часах Шорта суточная вариация хода составляет 0,001-0,003 сек. Долгое время столь высокая точность оставалась непревзойденной, В пятидесятых годах нашего века инженер Ф. М. Федченко усовершенствовал подвес маятника и улучшил его термокомпенсацию. Это позволило ему сконструировать часы, у которых суточная вариация хода была снижена до 0,0002-0,0003 сек.
В последние годы конструированием астрономических часов занялись уже не механики, а электрики и радиотехники. Ими были изготовлены часы, в которых для отсчета времени взамен колебаний маятника использовались упругие колебания кристалла кварца.
Пластинка, вырезанная соответствующим образом из кристалла кварца, обладает интересными свойствами. Если такую пластинку, называемую пьезокварцем, сжать или изогнуть, то на противоположных ее поверхностях появляются электрические заряды разного знака. Если к противоположным поверхностям пьезокварцевой пластинки подвести переменный электрический ток, то пьезокварц совершает колебания. Чем меньше затухание колебательного устройства, тем постояннее частота колебаний. Пьезокварц обладает в этом отношении исключительно хорошими свойствами, так как затухание его колебаний очень мало. Этим широко пользуются в радиотехнике для поддержания постоянства частоты радиопередатчиков. Это же свойство пьезокварца - высокое постоянство частоты колебаний - позволило построить очень точные астрономические кварцевые часы.
Кварцевые часы состоят из радиотехнического генератора, стабилизированного пьезокварцем, каскадов деления частоты, синхронного электромотора и циферблата со стрелками-указателями.
Радиотехнический генератор вырабатывает переменный ток высокой частоты, а пьезокварц с большой точностью поддерживает постоянство частоты его колебаний. В каскадах деления частоты производится понижение частоты переменного тока от нескольких сотен тысяч до нескольких сотен колебаний в секунду. Синхронный электромотор, работающий на переменном токе пониженной частоты, вращает стрелки-указатели, замыкает реле, подающие сигналы времени, и т. д.
Скорость вращения синхронного электромотора зависит от частоты переменного тока, которым он питается. Таким образом, в кварцевых часах скорость вращения стрелок-указателей в конечном счете определяется частотой колебаний пьезокварца. Большое постоянство частоты колебаний кварцевой пластинки обеспечивает равномерность хода и высокую точность показаний кварцевых астрономических часов.
В настоящее время изготовляются кварцевые часы различного типа и назначения с суточной вариацией хода, не превышающей сотых и даже тысячных долей секунды.
Первые конструкции кварцевых часов были довольно громоздкими. Ведь собственная частота колебаний кварцевой пластинки относительно высокая и для отсчета секунд и минут нужно снижать ее с помощью ряда каскадов деления частоты. Между тем применявшиеся для этого ламповые радиотехнические устройства занимают много места. В последние десятилетия бурно развилась полупроводниковая радиотехника и на ее основе разработана миниатюрная и микроминиатюрная радиоаппаратура. Это позволило построить малогабаритные переносные кварцевые часы для морской и воздушной навигации, а также для различных экспедиционных работ. Эти переносные кварцевые хронометры по своим размерам и весу не превышают обычные механические хронометры.
Однако если механический морской хронометр второго класса имеет суточную погрешность хода не более ±0,4 сек, а первого класса - не более ±0,2 сек, то современные кварцевые переносные хронометры имеют нестабильность суточного хода ±0,1; ±0,01 и даже ±0,001 сек.
Например, выпускаемый в Швейцарии "Хронотом" имеет размеры 245Х137Х100 мм, а нестабильность его хода за сутки не превышает ±0,02 сек. Стационарный кварцевый хронометр "Изотом" имеет долговременную относительную нестабильность не более 10-8, т. е. по суточному ходу погрешность около ±0,001 сек.
Однако кварцевые часы не лишены и серьезных недостатков, наличие которых существенно при астрономических измерениях высокой точности. Главные недостатки кварцевых астрономических часов - зависимость частоты колебаний кварца от температуры окружающей среды и "старение кварца", т. е. изменение частоты его колебаний с течением времени. С первым недостатком удалось справиться путем тщательного термостатирования той части часов, в которой расположена кварцевая пластинка. Старение кварца, приводящее к медленному дрейфу хода часов, пока устранить не удалось.