Файл: По дисциплине Астрономия.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 22.11.2023

Просмотров: 150

Скачиваний: 7

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

2.Молекулярные часы


Можно ли создать устройство для измерения интервалов времени, имеющее более высокую точность, чем маятниковые и кварцевые астрономические часы?

В поисках подходящих для этого методов ученые обратились к системам, в которых совершаются молекулярные колебания. Такой выбор, конечно, был не случайным и именно он предопределил дальнейшие успехи. "Молекулярные часы" позволили сначала в тысячи, а заем и в сотни тысяч раз увеличить точность измерения времени. Однако путь от молекулы до указателя времени оказался сложным и очень нелегким.

Почему же не удалось повысить точность маятниковых и кварцевых астрономических часов? Чем в отношении измерения времени молекулы оказались лучше маятников и кварцевых пластинок? Каковы принцип действия и устройство молекулярных часов?

Напомним, что любые часы состоят из блока, в котором совершаются периодические колебания, счетного механизма для подсчета их числа и устройства, в котором запасена энергия, необходимая для их поддержания. Однако точность показаний часов в основном зависит от стабильности работы того их элемента, который отмеряет время.

Для увеличения точности маятниковых астрономических часов их маятник делается из специального сплава с минимальным коэффициентом теплового расширения, помещается в термостат, специальным образом подвешивается, располагается в сосуде, из которого выкачан воздух, и т. д. Как известно, все эти мероприятия позволили снизить вариации хода астрономических маятниковых часов до тысячных долей секунды в сутки. Однако постепенный износ движущихся и трущихся деталей, медленные и необратимые изменения конструктивных материалов, в общем - "старение" таких часов не позволило добиться дальнейшего улучшения их точности.

В астрономических кварцевых часах время отмеряет генератор, стабилизированный кварцем, и точность показаний этих часов определяется постоянством частоты колебаний кварцевой пластинки. С течением времени в кварцевой пластинке и связанных с нею электрических контактах происходят необратимые изменения. Таким образом, этот задающий элемент кварцевых часов "стареет". При этом несколько изменяется частота колебаний кварцевой пластинки. Это и является причиной нестабильности таких часов и кладет предел дальнейшему увеличению их точности.


Молекулярные часы устроены так, что их показания, в конечном счете, определяются частотой электромагнитных колебаний, поглощаемых и испускаемых молекулами. Между тем атомы и молекулы поглощают и испускают энергию только прерывисто, только определенными порциями, называемыми квантами энергии. Эти процессы в настоящее время представляются так: когда атом находится в нормальном (невозбужденном) состоянии, то его электроны занимают нижние уровни энергии и при этом находятся на наиболее близком расстоянии от ядра. Если атомы поглощают энергию, например световую, то их электроны перескакивают в новые положения и располагаются несколько дальше от своих ядер.

Обозначим энергию атома, соответствующую самому низкому положению электрона, через Еи а энергию, соответствующую более далекому его расположению от ядра, - через Е2. Когда атомы, излучая электромагнитные колебания (например, световые), из возбужденного состояния с энергией Е2 переходят в невозбужденное с энергией Е1, то испускаемая порция электромагнитной энергии равна ε = E2-E1. Легко видеть, что приведенное соотношение есть не что иное, как одно из выражений закона сохранения энергии.

Между тем известно, что энергия кванта света пропорциональна его частоте: ε = hv, где ε-энергия электромагнитных колебаний, v - их частота, h = 6,62*10-27 эрг*сек - постоянная Планка. Из этих двух соотношений нетрудно найти частоту v света, испускаемого атомом. Очевидно, что v = (Е2 - E1)/h сек-1

Каждый атом данного типа (например, атом водорода, кислорода и т. д.) имеет свои уровни энергии. Поэтому каждый возбужденный атом при переходе в нижние состояния испускает электромагнитные колебания с вполне определенным набором частот, т. е. дает характерное лишь для него свечение. Точно так же дело обстоит v с молекулами, с той лишь разницей, что они имеют еще ряд добавочных уровней энергии, связанных с различным расположением составляющих их частиц и с их взаимным движением,

Таким образом, атомы и молекулы способны поглодать и излучать электромагнитные колебания только пределенной частоты. Стабильность, с которой атомные истемы это делают, чрезвычайно высока. Она в миллиарды раз выше стабильности любых макроскопических устройств, воспринимающих или излучающих те или иные виды колебаний, например, струн, камертонов, микрофонов и т. д. Объясняется это тем, что в любых макроскопических устройствах, например машинах, измерительных приборах и т. д., силы, обеспечивающие их устойчивость, большинстве случаев лишь в десятки или сотни раз больше внешних сил. Поэтому с течением времени и ри изменении внешних условий свойства таких приборов несколько изменяются. Музыкантам именно поэтому и приходится столь часто подстраивать свои скрипки и пианино. Напротив, в микросистемах, например атомах и молекулах, между частицами, их составляющими,

действуют столь большие силы, что обычные внешние воздействия по величине намного меньше их. Поэтому обычные изменения внешних условий - температуры, давления и т. д.- не вызывают сколько-нибудь заметных изменений внутри этих микросистем.

Этим и объясняется столь высокая точность спектрального анализа и многих других методов и приборов, основанных на использовании атомных и молекулярных колебаний. Это и делает столь привлекательным использование этих квантовых систем в качестве задающего элемента в астрономических часах. Ведь такие микросистемы с течением времени своих свойств не меняют, т. е. не "стареют".

Когда инженеры занялись конструированием молекулярных часов, то методы возбуждения атомных и молекулярных колебаний уже были хорошо известны. Один из них заключается в том, что к сосуду, заполненному тем или иным газом, подводятся высокочастотные электромагнитные колебания. Если частота этих колебаний соответствует энергии возбуждения данных частиц, то происходит резонансное поглощение электромагнитной энергии. Спустя некоторое время (меньше миллионной доли секунды) возбужденные частицы (атомы и молекулы) самопроизвольно переходят из возбужденного в нормальное состояние и при этом сами излучают кванты электромагнитной энергии.

Казалось бы, что следующий шаг в конструировании таких часов должен заключаться в подсчете числа этих колебаний, ведь подсчитывается же в маятниковых часах число качаний маятника. Однако такой прямой, "лобовой" путь оказался слишком трудным. Дело в том, что частота электромагнитных колебаний, испускаемых молекулами, очень высока. Например, в молекуле аммиака для одного из основных переходов она составляет 23 870 129 000 периодов в секунду. Частота электромагнитных колебаний, испускаемых различными атомами, бывает такого же порядка величины или еще выше. Ни одно механическое устройство для подсчета числа столь высокочастотных колебаний не годится. Более того, обычные электронные устройства тоже оказались для этого непригодными.

Выход из этого затруднения был найден с помощью оригинального обходного маневра. В длинную металлическую трубку (волновод) был помещен аммиачный газ. Для удобства обращения эта трубка свернута в спираль. К одному концу этой трубки подводились от генератора высокочастотные электромагнитные колебания, а в другом ее конце был установлен прибор, измеряющий их интенсивность. Генератор позволял в некоторых пределах менять частоту возбуждаемых им электромагнитных колебаний.


Для перехода молекул аммиака из невозбужденного в возбужденное состояние нужна вполне определенная энергия и соответственно вполне определенная частота электромагнитных колебаний (ε = hv, где ε- энергия кванта, v - частота электромагнитных колебаний, h - постоянная Планка). До тех пор, пока частота электромагнитных колебаний, вырабатываемых генератором, больше или меньше этой резонансной частоты, молекулы аммиака энергии не поглощают. При совпадении этих частот значительное число молекул аммиака поглощает электромагнитную энергию и переходит в возбужденное состояние. Разумеется, при этом (в силу закона сохранения энергии) у того конца волновода, где установлен измерительный прибор, интенсивность электромагнитных колебаний оказывается меньше. Если плавно изменять частоту генератора и записывать показания измерительного прибора, то при резонансной частоте обнаруживается провал интенсивности электромагнитных колебаний.

Следующий шаг в конструировании молекулярных часов как раз и заключается в использовании этого эффекта. Для этого было собрано специальное устройство. В нем генератор высокой частоты, снабженный блоком питания, вырабатывает высокочастотные электромагнитные колебания. Для увеличения постоянства частоты этих колебаний генератор стабилизирован с. помощью пьезокварца. В существующих приборах такого типа частота колебаний генератора высокой частоты выбирается равной нескольким сотням тысяч периодов в секунду в соответствии с собственной частотой колебаний используемых в них кварцевых пластинок.

Так как эта частота слишком высока для того, чтобы непосредственно управлять каким-либо механическим устройством, то с помощью блока деления частоты она понижается до нескольких сотен колебании в секунду и лишь после этого подается на сигнальные реле и синхронный электромотор, вращающий стрелки-указатели, расположенные на циферблате часов. Таким образом, эта часть молекулярных часов повторяет схему описанных ранее кварцевых часов.

Для того чтобы возбудить молекулы аммиака, часть электромагнитных колебаний, вырабатываемых генератором высокой частоты, подается на умножитель частоты переменного тока (см. рис. 23). Коэффициент умножения частоты в нем выбран так, чтобы довести ее до резонансной. С выхода умножителя частоты электромагнитные колебания поступают на волновод с аммиачным газом. Прибор, стоящий на выходе волновода,- дискриминатор,- отмечает интенсивность прошедших через волновод электромагнитных колебаний и воздействует на генератор высокой частоты, изменяя частоту возбуждаемых им колебаний. Дискриминатор устроен так, что когда на вход волновода
поступают колебания с частотой ниже резонансной, то он подстраивает генератор, увеличивая частоту его колебаний. Если же на вход волновода поступают колебания с частотой выше резонансной, то он снижает частоту генератора. При этом настройка в резонанс получается тем более точной, чем круче идет кривая поглощения. Таким образом, желательно, чтобы провал интенсивности электромагнитных колебаний, обязанный резонансному поглощению их энергии молекулами, был возможно более узким и глубоким.

Все эти связанные между собой приборы - генератор, умножитель, волновод с аммиачным газом и дискриминатор- представляют собой цепь обратной связи, в которой молекулы аммиака возбуждаются генератором и в то же время управляют им, заставляя его вырабатывать колебания нужной частоты. Таким образом, в конечном счете в молекулярных часах в качестве стандарта частоты и времени используются молекулы аммиака. В первых молекулярных аммиачных часах, разработанных по этому принципу Г. Лионсом в 1953 г., нестабильность хода составляла около 10-7, т. е. изменение частоты не превышало десятимиллионной доли. В дальнейшем нестабильность была снижена до 10-8, что соответствует ошибке в измерении интервалов времени на 1 сек за несколько лет.

В общем, это, конечно, прекрасная точность. Однако оказалось, что в построенном приборе кривая поглощения электромагнитной энергии получилась далеко не столь резкой, как предполагалось, а несколько "размазанной". Соответственно этому и точность всего устройства получилась значительно ниже ожидавшейся. Проведенные в последующие годы тщательные исследования этих молекулярных часов позволили выяснить, что их показания в некоторой мере зависят от конструкции волновода, а также от температуры и давления находящегося в нем газа. Было установлено, что именно эти эффекты являются источниками нестабильности работы таких часов и ограничивают их точность.

В дальнейшем эти дефекты молекулярных часов полностью устранить так и не удалось. Однако удалось придумать другие, более совершенные типы квантовых измерителей времени.