Файл: Рабочая программа по математике для 5 класса на 20222023 учебный год составитель Поздеева Татьяна Юрьевна.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.11.2023

Просмотров: 61

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Муниципальное казённое общеобразовательное учреждение

средняя общеобразовательная школа

с.Лойно Верхнекамского района Кировской области

"Утверждаю"

"Согласовано"

Рассмотрено

директор ОУ

зам.директора по УВР

на заседании М.О.

___________________

_____________________

протокол № 4

"__"августа 2022 г.

"__" августа 2022 г.

" " августа 202 г.


РАБОЧАЯ ПРОГРАММА

ПО МАТЕМАТИКЕ ДЛЯ 5 КЛАССА НА 2022-2023 УЧЕБНЫЙ ГОД


Составитель:

Поздеева Татьяна Юрьевна,

учитель высшей квалификационной категории

2022

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Настоящая рабочая программа по математике для учащихся 5 класса составлена на основе:

  • Приказа Министерства просвещения Российской Федерации от 31.05.2021 № 287 "Об утверждении федерального государственного образовательного стандарта основного общего образования"(Зарегистрирован 05.07.2021 № 64101).

  • Примерной основной образовательной программой основного общего образования" (одобрена решением федерального учебно-методического объединения по общему образованию, протокол от 18.03.2022 N 1/22).

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА "МАТЕМАТИКА"

Рабочая программа по математике для обучающихся 5 - 6 классов разработана на основе Федерального государственного образовательного стандарта основного общего образования с учётом и современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования, которые обеспечивают овладение ключевыми компетенциями, составляющими основу для непрерывного образования и саморазвития, а также целостность общекультурного, личностного и познавательного развития обучающихся. В рабочей программе учтены идеи и положения Концепции развития математического образования в Российской Федерации. В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без базовой математической подготовки. Уже в школе математика служит опорным предметом для изучения смежных дисциплин, а после школы реальной необходимостью становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической.


Это обусловлено тем, что в наши дни растёт число профессий, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг школьников, для которых математика может стать значимым предметом, расширяется.

Практическая полезность математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и прикладных идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты и составлять алгоритмы, находить и применять формулы, владеть практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм и графиков, жить в условиях неопределённости и понимать вероятностный характер случайных событий.

Одновременно с расширением сфер применения математики в современном обществе всё более важным становится математический стиль мышления, проявляющийся в определённых умственных навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике и в формировании алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые. В процессе решения задач — основой учебной деятельности на уроках математики — развиваются также творческая и прикладная стороны мышления.

Обучение математике даёт возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.



Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека.

Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА

     Приоритетными целями обучения математике в 5 – 6 классах являются:

  • продолжение формирования основных математических понятий (число, величина, геометрическая фигура), обеспечивающих преемственность и перспективность математического образования обучающихся; 

  • развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, интереса к изучению математики; 

  • подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира; 

  • формирование функциональной математической грамотности: умения распознавать математические объекты в реальных жизненных ситуациях, применять освоенные умения для решения практико-ориентированных задач, интерпретировать полученные результаты и оценивать их на соответствие практической ситуации.

Основные линии содержания курса математики в 5 - 6 классах — арифметическая и геометрическая, которые развиваются параллельно, каждая в соответствии с собственной логикой, однако, не независимо одна от другой, а в тесном контакте и взаимодействии. Также в курсе происходит знакомство с элементами алгебры и описательной статистики.

Изучение арифметического материала начинается со систематизации и развития знаний о натуральных числах, полученных в начальной школе. При этом совершенствование вычислительной техники и формирование новых теоретических знаний сочетается с развитием вычислительной культуры, в частности с обучением простейшим приёмам прикидки и оценки результатов вычислений. Изучение натуральных чисел продолжается
в 6 классе знакомством с начальными понятиями теории делимости.
Другой крупный блок в содержании арифметической линии — это дроби. Начало изучения обыкновенных и десятичных дробей отнесено к 5 классу. Это первый этап в освоении дробей, когда происходит знакомство с основными идеями, понятиями темы. При этом рассмотрение обыкновенных дробей в полном объёме предшествует изучению десятичных дробей, что целесообразно с точки зрения логики изложения числовой линии, когда правила действий с десятичными дробями можно обосновать уже известными алгоритмами выполнения действий с обыкновенными дробями. Знакомство с десятичными дробями расширит возможности для понимания обучающимися прикладного применения новой записи при изучении других предметов и при практическом использовании. К 6 классу отнесён второй этап в изучении дробей, где происходит совершенствование навыков сравнения и преобразования дробей, освоение новых вычислительных алгоритмов, оттачивание техники вычислений, в том числе значений выражений, содержащих и обыкновенные, и десятичные дроби, установление связей между ними, рассмотрение приёмов решения задач на дроби. В начале 6 класса происходит знакомство с понятием процента.

Особенностью изучения положительных и отрицательных чисел является то, что они также могут рассматриваться в несколько этапов. В 6 классе в начале изучения темы «Положительные и отрицательные числа» выделяется подтема «Целые числа», в рамках которой знакомство с отрицательными числами и действиями с положительными и отрицательными числами происходит на основе содержательного подхода. Это позволяет на доступном уровне познакомить учащихся практически со всеми основными понятиями темы, в том числе и с правилами знаков при выполнении арифметических действий. Изучение рациональных чисел на этом не закончится, а будет продолжено в курсе алгебры 7 класса, что станет следующим проходом всех принципиальных вопросов, тем самым разделение трудностей
облегчает восприятие материала, а распределение во времени способствует прочности приобретаемых навыков.

При обучении решению текстовых задач в 5 - 6 классах используются арифметические приёмы решения. Текстовые задачи, решаемые при отработке вычислительных навыков в 5 – 6 классах, рассматриваются задачи следующих видов: задачи на движение, на части, на покупки, на работу и производительность, на проценты, на отношения и пропорции. Кроме того, обучающиеся знакомятся с приёмами решения задач перебором возможных вариантов, учатся работать с информацией, представленной в форме таблиц или диаграмм.

В Примерной рабочей программе предусмотрено формирование пропедевтических алгебраических представлений. Буква как символ некоторого числа в зависимости от математического контекста вводится постепенно. Буквенная символика широко используется прежде всего для записи общих утверждений и предложений, формул, в частности для вычисления геометрических величин, в качестве «заместителя» числа.

В курсе «Математики» 5 - 6 классов представлена наглядная геометрия, направленная на развитие образного мышления, пространственного воображения, изобразительных умений. Это важный этап в изучении геометрии, который осуществляется на наглядно-практическом уровне, опирается на наглядно-образное мышление обучающихся. Большая роль отводится практической деятельности, опыту, эксперименту, моделированию. Обучающиеся знакомятся с геометрическими фигурами на плоскости и в пространстве, с их простейшими конфигурациями, учатся изображать их на нелинованной и клетчатой бумаге, рассматривают их простейшие свойства. В процессе изучения наглядной геометрии знания, полученные обучающимися в начальной школе, систематизируются и расширяются.

МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ

Согласно учебному плану в 5 классе изучается интегрированный предмет «Математика», который включает арифметический материал и наглядную геометрию, а также пропедевтические сведения из алгебры. Учебным планом на изучение математики в 5 классе отводится 5 учебных часов в неделю, всего  170 учебных часов.