ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 30.11.2023
Просмотров: 122
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Баланс сухих веществ и химический состав сырья, полуфабриката и готовой продукции, включая использование подпрессовых бульонов, характеризуются следующими данными.
Химический состав сырья (в %)
*
*
(
В числителе даны пределы содержания, в знаменателе - среднее содержание.
)
Химический состав разваренной массы перед направлением ее в пресс (%):
Химический состав жома (в%) после выхода его из пресса
Примечай и е. Применяемый в дайной жиромучной установке двух- шнековый пресс обеспечивал паспортные характеристики во всех циклах работы, за исключением одного цикла, когда остаточная влажность в жоме составляет 62,38%. По действующим инструкциям, влажность жома должна быть в пределах от 50 до 57%.
Химический состав Сушенки (в %):
Химический состав полученной рыбной муки без использования подпрессовых бульонов (в %):
Химический состав бульона, выходящего из двухшнекового пресса (в %):
При переработке 1 т рыбного сырья получается 350 кг жома и
650 кг бульона, весовой состав бульона (в кг):
Химический состав: белковой массы (в %), полученной из шламоотделителя:
Крупная белковая фракция, отделяемая из бульона шламоотделителем, составляет 3,95%. Выход белковой массы в шламоот делители (в кг /т сырья), равен
Химический состав бульона после сепаратора (в %):
При сепарации жирность бульона снижается в 5,03 до 0,40%. Количество жира (в кг /т сырья), выделяемого сепарацией, достигает
Таким образом, количество прессового бульона после прохождения через шламоотделитель и сепаратор (кг /т сырья) снижается на 25,6 + 30,0 = 55,6.
Количество очищенного клеевого бульона, направляемого на упаривание составляет
Химический состав клеевого бульона, направляемого в концентратор на упаривание после сепарации, дан ниже (в кг):
Химический состав полученного концентрата после упаривания (в %):
При содержании плотных веществ в концентрате 45,9% масса плотных веществ составляет 44,2 кг /т сырья, а масса концентрата равна
Количество влаги, отогнанной из бульона в испарителе, достигает
Весовой состав концентрата (в кг), получаемого из 1 т сырья, при зафиксированном химическом составе:
При содержании плотных веществ 47,7 кг в концентрате, полученном из
1 т сырья, и влажности в готовом продукте до 12% выход рыбной муки из концентрированного бульона в пересчете на 1 т сырья составляет
Следовательно, при использовании подпрессовых бульонов выход муки увеличивается на 3,18%. При этом химический состав цельной рыбной муки (в
%) характеризовался следующими данными:
Определение привеса протеина в цельной муке производится соответствующим перерасчетом химического состава. Этот привес характеризуется данными табл. 27.
Таблица 27
Введение рыбного концентрата, получаемого после упаривания бульона, в кормовую муку дает исключительно большой кормовой эффект, так как фактор животного белка (АР), аминокислоты; и витамины, взаимодействуя, обеспечивают необходимый кормовой баланс.
На отечественных судах, а также на судах США, Японии, Перу, Норвегии,
ФРГ, Англии и некоторых других стран рыбно-мучные установки снабжены выпарными аппаратами. Сконцентрированные бульоны, содержащие белковые вещества, витамины и минеральные соли, возвращаются в кормовую муку или выпускаются в виде самостоятельного кормового продукта, называемого растворимой рыбой.
Новым и прогрессивным в технологии упаривания обезжиренных бульонов является использование центробежной силы для быстрого пропускания
испаряемой жидкости через поверхность нагрева.
При этом продолжительность испарения жидкости сократилась до 1 сек. Это новое усовершенствование фирмы "Альфа Лаваль" обеспечивает более полное сохранение цвета, содержания протеина, витаминов и других входящих в бульон веществ. Отсутствие денатурации улучшает растворимость порошкообразных продуктов и обеспечивает получение кормовых и пищевых продуктов высокого качества.
Новая технология упаривания бульонов дает возможность положительно решать вопросы организации производства концентрированных бульонов из абсолютно свежего сырья для последующего выпуска из них продуктов питания, обеспечивает высокую степень их концентрации. Очищенные от жира бульоны за один цикл могут сгущаться до концентрации сухих веществ
85 %.
Из выпарных установок, применяемых за рубежом, представляет интерес непрерывно действующая установка фирмы "Д е Лаваль", именуемая "Центритерм" (рис. 24), производительностью 800 кг /ч по испаряемой влаге, в процессе работы в ее выпарном аппарате одновременно может быть только 1,5 л жидкости. В связи с тем, что в системе содержится мало бульона, а теплопередача чрезвычайно эффективна, нормальные рабочие параметры достигаются быстро.
Рис. 24. Технологическая схема непрерывно действующей выпарной установки
фирмы 'Де Лаваль' 'Центритерм' производительностью 800 кг испаряемой
влаги в 1 ч: 1 - фильтры взаимозаменяемые; 2 - балансировочный резервуар с
двумя поплавковыми клапанами; 3 - питающий насос переменной
производительности; 4 - выпарной аппарат; 5 - вакуум-охладитель; 6 -
пароструйный эжектор; 7 - вытяжной насос; 8 - поверхностный конденсатор
типа пластинчатого теплообменника
По сравнению с большинством выпарных установок у "Центритерма" период работы между чистками более продолжителен, так как упариваемый бульон отбрасывается центробежной силой с поверхности нагрева до образования пригара.
При этом продолжительность испарения жидкости сократилась до 1 сек. Это новое усовершенствование фирмы "Альфа Лаваль" обеспечивает более полное сохранение цвета, содержания протеина, витаминов и других входящих в бульон веществ. Отсутствие денатурации улучшает растворимость порошкообразных продуктов и обеспечивает получение кормовых и пищевых продуктов высокого качества.
Новая технология упаривания бульонов дает возможность положительно решать вопросы организации производства концентрированных бульонов из абсолютно свежего сырья для последующего выпуска из них продуктов питания, обеспечивает высокую степень их концентрации. Очищенные от жира бульоны за один цикл могут сгущаться до концентрации сухих веществ
85 %.
Из выпарных установок, применяемых за рубежом, представляет интерес непрерывно действующая установка фирмы "Д е Лаваль", именуемая "Центритерм" (рис. 24), производительностью 800 кг /ч по испаряемой влаге, в процессе работы в ее выпарном аппарате одновременно может быть только 1,5 л жидкости. В связи с тем, что в системе содержится мало бульона, а теплопередача чрезвычайно эффективна, нормальные рабочие параметры достигаются быстро.
Рис. 24. Технологическая схема непрерывно действующей выпарной установки
фирмы 'Де Лаваль' 'Центритерм' производительностью 800 кг испаряемой
влаги в 1 ч: 1 - фильтры взаимозаменяемые; 2 - балансировочный резервуар с
двумя поплавковыми клапанами; 3 - питающий насос переменной
производительности; 4 - выпарной аппарат; 5 - вакуум-охладитель; 6 -
пароструйный эжектор; 7 - вытяжной насос; 8 - поверхностный конденсатор
типа пластинчатого теплообменника
По сравнению с большинством выпарных установок у "Центритерма" период работы между чистками более продолжителен, так как упариваемый бульон отбрасывается центробежной силой с поверхности нагрева до образования пригара.
Рис. 25. Схема установки 'Центритерм'
Схема удаления влаги из бульона показана на рис. 25. Поверхность нагрева состоит из ряда нагреваемых паром конусных тарелок, которые вращаются на общем веретене. Бульон подается в аппарат через патрубок. Сопла разбрызгивают жидкость к нижней части конусов, где она под действием центробежной силы немедленно распределяется по всей поверхности нагрева слоем толщиной не более 0,1 мм. Кипящий бульон проходит через поверхность нагрева приблизительно в течение 1 сек. Концентрат собирается в пространстве на периферии конусов, откуда проходит через вертикальные отверстия в отдельный канал и затем выпускается через стационарный отделительный патрубок. Пар отводится из окружающего кожуха через боковое отверстие.
Через полое веретено пар впускается в паровую камеру, а затем внутрь конуса, где конденсируется проходящим по другой стороне бульоном.
Центробежной силой конденсат отбрасывается к верхним внутренним
конусным стенкам, следуя по ним к периферии конусов, откуда выпускается через отверстия в отделительном канале, находящемся на дне паровой камеры.
Отсюда он вытягивается стационарным отделительным патрубком и выпускается через полое веретено.
Выпарная установка имеет два фильтра, которые отделяют все крупные частицы белка из бульона, поступающего в балансировочный резервуар.
Резервуар снабжен двумя поплавковыми клапанами, из которых один поддерживает постоянный уровень жидкости, а другой служит предохранителем. В том случае когда подача жидкости по какой-либо причине прекращается, предохранительный клапан направляет бульон в резервуар и таким образом предотвращает "сухое кипение" и пригорание.
Питающий насос подает жидкость в выпарной аппарат, пропускная способность которого регулируется этим же насосом переменной мощности.
После выпаривания бульона до установленной концентрации полученный концентрат немедленно охлаждается в вакуум-охладителе, вакуум которого создается пароструйным эжектором. Готовый к расфасовке концентрат откачивается насосом. Соковый пар из выпарного аппарата и эжектора конденсируется в поверхностном конденсаторе. Техническая характеристика конденсатора показана в табл. 28.
Таблица 28
Отсюда он вытягивается стационарным отделительным патрубком и выпускается через полое веретено.
Выпарная установка имеет два фильтра, которые отделяют все крупные частицы белка из бульона, поступающего в балансировочный резервуар.
Резервуар снабжен двумя поплавковыми клапанами, из которых один поддерживает постоянный уровень жидкости, а другой служит предохранителем. В том случае когда подача жидкости по какой-либо причине прекращается, предохранительный клапан направляет бульон в резервуар и таким образом предотвращает "сухое кипение" и пригорание.
Питающий насос подает жидкость в выпарной аппарат, пропускная способность которого регулируется этим же насосом переменной мощности.
После выпаривания бульона до установленной концентрации полученный концентрат немедленно охлаждается в вакуум-охладителе, вакуум которого создается пароструйным эжектором. Готовый к расфасовке концентрат откачивается насосом. Соковый пар из выпарного аппарата и эжектора конденсируется в поверхностном конденсаторе. Техническая характеристика конденсатора показана в табл. 28.
Таблица 28
1 2 3 4 5
Высушивание
Отпрессованная плотная масса содержит воду, поэтому она должна немедленно высушиваться.
Высушивание продукта преследует две основные цели: привести продукт в состояние, при котором он не подвергается порче и разложению, т. е. обеспечить возможность продолжительного хранения его в складах обычного типа; удешевить транспортировку рыбной муки, уменьшая ее вес.
Отпрессованная плотная масса содержит воду, поэтому она должна немедленно высушиваться.
Высушивание продукта преследует две основные цели: привести продукт в состояние, при котором он не подвергается порче и разложению, т. е. обеспечить возможность продолжительного хранения его в складах обычного типа; удешевить транспортировку рыбной муки, уменьшая ее вес.
В процессе высушивания тщательно контролируется температурный режим во избежание ухудшения свойств муки. Повышенная влажность жома при хранении способствует разложению белковых веществ. При наличии избыточной влаги В: результате развития многочисленных микроорганизмов интенсивно идет процесс гниения, сопровождающийся выделением дурно пахнущих газов: белковые вещества разлагаются с образованием большого количества продуктов распада, в том числе аммиака, сероводорода и других веществ. Удаление излишней влаги из продукта снижает жизнедеятельность микробов. Если микроорганизмы в процессе стерилизации не погибают,, то в высушенном продукте они не могут развиваться. Нельзя направлять на хранение влажную рыбную муку или подсушенный полуфабрикат еще и потому, что находящийся в них жир прогоркает, придавая продукту неприятный вкус. Прогоркание жира сопровождается образованием веществ, способных вызвать отравление животных.
Процесс сушки заключается в удалении влаги из высушиваемого материала до содержания ее в продукте не более 10%. При дальнейшем снижении содержания влаги в продукте его кормовые свойства ухудшаются.
При высушивании рыбной муки до содержания влаги менее 10% резко снижается перевариваемость муки вследствие глубокой денатурации белков.
Следовательно, в массе, выходящей из-под пресса с содержанием около 45% влаги, 10 - 12% влаги (в пересчете на сухое вещество) будут относиться к химически связанной,, т. е. к влаге, которая является составной частью муки в нормальных условиях ее хранения.
Скорость высушивания материала находится в прямой зависимости от скорости испарения свободной влаги с поверхности этого материала и скорости диффузии влаги из толщи его к поверхности. Скорость диффузии зависит от температуры, поэтому ускоренное высушивание может быть достигнуто применением максимально сухого воздуха, а также повышением его температуры, при котором возрастает водопоглотителькая способность воздуха. Частой сменой подогретого воздуха с поверхности продукта удаляется слой воздуха, обогащенный влагой, поэтому диффузия происходит за счет разности во влагосодержании внутри высушиваемого материала и на его поверхности, а также за счет температуры нагрева.
Так, например, при 0°С предельное количество влаги, содержащейся в
1 м
3
воздуха, равно 4,84 г; при температуре 0° и относительной влажности 5% в 1 м
3
воздуха содержится влаги 0,24 г. Повышая температуру в процессе сушки, создают такие условия, при которых количество водяных паров, необходимое для насыщения данного объема воздуха, возрастает. Так, при температуре 5°С и относительной влажности 100% в 1 м
3
воздуха содержится
6,80 г воды, а при температуре 25°С и той же относительной влажности в
1 м
3
воздуха будет 23,03 г воды. Таким образом, чтобы высушить продукт при температуре 25°С, необходимо создать такие условия, при которых слои воздуха, соприкасающиеся с поверхностными слоями продукта, содержали бы
влаги в 1 м
3
меньше 23,03 г, иначе продукт не будет отдавать влагу, т. е. относительная влажность воздуха должна быть ниже 100%. Практически это достигается путем обмена воздуха, при котором насыщенный влагой воздух удаляется, а вместо него поступает воздух с меньшим содержанием паров, т. е. с большей влагоемкостью.
Степень насыщения определяют в процентах от предельной влажности и называют относительной влажностью. Относительную влажность φ (в % от 0 до 100) определяют по следующей формуле: где Q
н
- количество пара в единице объема влажного воздуха;
Q
н
, - количество пара в единице объема насыщенного воздуха.
Высушивание рыбного сырья проводится путем искусственного повышения температуры, а следовательно и увеличения влагоемкости воздуха. Так, например, если при 0° С воздух, содержащий 4,84 г влаги в 1 м
3
, является полностью насыщенным, то при нагревании его до 40°С относительная влажность воздуха падает до 10%, т. е. воздух становится весьма сухим.
1 м
3
воздуха, насыщенный влагой при 0°С, будучи подогретым до 40°С, может поглотить 51,13 - 4,84 = 46,29 г влаги. Удаление влаги с поверхности продукта обусловливается разностью между влажностью наружной поверхности высушиваемого материала и влажностью воздуха.
Испарение воды с поверхности высушиваемого материала определяется скоростью переноса водных паров через мало подвижный слой воздуха, окружающего продукт.
Процесс переноса водяных паров аналогичен растворению в жидкости кристаллов, окруженных неподвижным слоем насыщенного раствора. В процессах растворения скорость диффузии растворенных частиц за пределами неподвижного слоя пропорциональна разности концентрации частиц в этом слое и окружающем растворе. Диффузия водяных паров через неподвижный слой воздуха пропорциональна разности между парциальным давлением пара у поверхности высушиваемого материала и парциальным давлением водяного пара в высушивающем воздухе. При растворении твердого вещества в воде сильное перемешивание жидкости ускоряет процесс растворения; подобно этому быстрое движение воздуха способствует ускорению сушки, так как уменьшает до минимума толщину насыщенного водяными парами воздушного слоя у поверхности высушиваемого материала, вследствие чего скорость диффузии паров повышается.
3
меньше 23,03 г, иначе продукт не будет отдавать влагу, т. е. относительная влажность воздуха должна быть ниже 100%. Практически это достигается путем обмена воздуха, при котором насыщенный влагой воздух удаляется, а вместо него поступает воздух с меньшим содержанием паров, т. е. с большей влагоемкостью.
Степень насыщения определяют в процентах от предельной влажности и называют относительной влажностью. Относительную влажность φ (в % от 0 до 100) определяют по следующей формуле: где Q
н
- количество пара в единице объема влажного воздуха;
Q
н
, - количество пара в единице объема насыщенного воздуха.
Высушивание рыбного сырья проводится путем искусственного повышения температуры, а следовательно и увеличения влагоемкости воздуха. Так, например, если при 0° С воздух, содержащий 4,84 г влаги в 1 м
3
, является полностью насыщенным, то при нагревании его до 40°С относительная влажность воздуха падает до 10%, т. е. воздух становится весьма сухим.
1 м
3
воздуха, насыщенный влагой при 0°С, будучи подогретым до 40°С, может поглотить 51,13 - 4,84 = 46,29 г влаги. Удаление влаги с поверхности продукта обусловливается разностью между влажностью наружной поверхности высушиваемого материала и влажностью воздуха.
Испарение воды с поверхности высушиваемого материала определяется скоростью переноса водных паров через мало подвижный слой воздуха, окружающего продукт.
Процесс переноса водяных паров аналогичен растворению в жидкости кристаллов, окруженных неподвижным слоем насыщенного раствора. В процессах растворения скорость диффузии растворенных частиц за пределами неподвижного слоя пропорциональна разности концентрации частиц в этом слое и окружающем растворе. Диффузия водяных паров через неподвижный слой воздуха пропорциональна разности между парциальным давлением пара у поверхности высушиваемого материала и парциальным давлением водяного пара в высушивающем воздухе. При растворении твердого вещества в воде сильное перемешивание жидкости ускоряет процесс растворения; подобно этому быстрое движение воздуха способствует ускорению сушки, так как уменьшает до минимума толщину насыщенного водяными парами воздушного слоя у поверхности высушиваемого материала, вследствие чего скорость диффузии паров повышается.
Теоретически количество испаряемой воды W, т. е. скорость сушки выражается следующим уравнением диффузии: где p
1
- р - разность упрутостей паров на поверхности высушиваемого материала и окружающего воздуха;
а - скорость испарения в неподвижном воздухе;
b - коэффициент пропорциональности (константа);
v - скорость движения воздуха.
Влага, удаляемая с поверхности, должна диффундировать в виде пара через слой воздуха, непосредственно соприкасающийся с этой поверхностью.
Движущей силой данного процесса является разность между парциальным давлением паров воды на наружной поверхности высушиваемого материала и давлением паров воды в окружающем воздухе согласно приведенному выше уравнению.
Равновесие между воздухом с переменной температурой и влажностью высушиваемого вещества наступает в тот момент, когда содержание влаги в высушиваемом продукте достигает такого предела, при котором обезвоживание практически прекращается. Такое содержание влаги в материале принято называть равновесным, или устойчивым.
Продукт будет поглощать из воздуха влагу до тех пор, пока не восстановится равновесие между содержанием влаги в продукте и в воздухе.
Восстановление равновесия зависит от условий, в которых находится материал. Однако конечный результат всегда будет один и тот же, если на высушивание было затрачено достаточное количество времени.
Практически при сушке почти всегда происходит некоторая потеря сухого вещества вследствие уноса мелких частичек его теплоносителем.
Выход сушеного продукта Q
2
может быть выражен формулой где - коэффициент сохранения материала (меньше 1);
Q
1
- начальная масса материала;