Файл: 1. Автоматизация инженерного проектирования.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 26

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Не сложно заметить, что большая часть времени, затрачиваемая на проектирование модели, тратится на вычерчивание детали, что составляет третью часть от всего времени.

Системы автоматизации инженерных расчетов(CAE).

В данном разделе разберемся, что-же представляют из себя системы автоматизации инженерных расчет и для чего они применяются.

Говоря простыми словами, CAE-системы применяются в тех случаях, где необходимо производить какие-либо инженерные расчеты, анализировать и визуализировать физические процессы. САЕ-системы также поддерживают возможность производить моделирование процессов динамики, а также улучшать проектируемое изделие.

В основном CAE-системы проверяют уже готовые изделия, которые спроектированы в системах CAD, то есть уже готовые геометрические модели. С помощью довольно развитых CAE-систем изделия, которые собираются уже непосредственно на предприятиях, выходят из конвейера в надлежащем виде и качестве и в дальнейшем доходят до заказчика в указанный срок.

Огромное множество САЕ-систем имеют возможность производить решения систем уравнений с дифференциалами в частных производных, используя метод конечных элементов.

Основные функции САЕ-систем имеют очень большое разнообразие. Например, в машиностроительных САЕ-системах выполняются такие функции, как:

  • анализ кинематики и динамики изделия путем определения траектории движения подвижных частей и сил, которые приложены к изделию в рабочем процессе;

  • процесс моделирования физических свойств, которые проводятся методом конечных элементов;

  • расчет состояния и временных процессов на макроуровне;

  • моделирование сложных производственных систем на основе моделей массового обслуживания и сетей Петри.

На рисунке 7 можно увидеть небольшую часть отраслей, где используются САЕ-системы.



Рисунок 7 – Отрасли использования САЕ-систем.

В настоящее время уже нереально представить какое-либо производство без САЕ-систем. В связи с чем САЕ-системы обширно развиваются в различных направлениях. Несколько таких направлений представлены на рисунке 8.



Рисунок 8 – Направления развития САЕ-систем.

При проведении инженерных исследований в системе САЕ создается компьютерная модель, которая называется анализом. Она описывает поведение объекта при определенных условиях. Эта компьютерная модель содержит геометрическую трехмерную модель детали или узла и набор условий, которые ограничивают нагрузку и движение исследуемого элемента.


Как правильно, прототип задачи механического анализа определяется следующим образом и представляется уравнением в частных дифференциальных уравнениях вместе с начальными условиями и граничными условиями.

Условно решения дифференциальных уравнений разделяют на две основные категории. К ним относятся аналитические методы и численные методы.

Благодаря аналитическому методу нужное нам решение будет являться уравнение, с помощью которого можно будет найти значения нужной нам функции, за счет использования определенных значений аргументов. Про такое решение говорят, что оно получено в аналитической форме.

Многие инженерные задачи, связанные с изучением напряженно-деформированного состояния твердых тел, могут быть решены с помощью аналитических методов, таких как теория упругости и пластичности, теории пластин и оболочек.

Например, если задача определения напряжений, перемещений и собственной частоты конструкции простой геометрии может быть сведена к решению алгебраических, тригонометрических и элементарных дифференциальных уравнений, известных из лекций по механике материалов и теоретической механике, то решение может быть получено аналитическими методами.

Преимущество аналитического метода заключается в том, что точные результаты могут быть получены за короткое время.

Решения получаются путем подстановки, функциональных преобразований и строгого обоснования определенных предположений.

Из-за грубости модели физическая точность метода невысока, и в большинстве случаев он может лишь оценить количество цифр. Для более точных и сложных моделей аналитические решения встречаются относительно редко.

Многие важные технические проблемы не могут быть решены аналитически из-за сложности геометрии конструкции и граничных условий.

Численные вычисления- это метод подхода к решению математических задач, обычно путем выполнения ряда арифметических операций над числовыми значениями. Численные расчеты позволяют получать результаты с числовой неопределенностью, которая зависит от проблемы. В этом отличие от аналитических методов.

Численные методы дают только приблизительные решения. Аналитические методы дают приблизительное решение проблемы. Численные расчеты позволяют получить решение задачи при конкретных значениях параметров и исходных данных.

Для того, чтобы провести анализ, который позволит нам определить зависимость нашего решения от некоторых параметров и заданных начальных условиях, просто необходимо произвести серию вычислений.



Когда дифференциальное уравнение решают численным методом неизвестная величина будет являться переменная в конечном значении исходного поля. В таком случае дифференциальное уравнение будет дискретизироваться.

Системы автоматизированного проектирования(CAD).

Системы автоматизированного проектирования или же computer-aided design(САD) используются для моделирования в двухмерном или трехмерном пространстве. С помощью САD систем проектируются конструкции технологических процессов, изделий машиностроения, авиастроения, полупроводников и многого другого.

В двухмерном (2D) проектировании производится черчение, оформление конструкторской документации, а в трехмерном (3D) проектировании получаются уже готовые трехмерные модели вместе с расчетами характеристик, также реализуется визуализация для более детального изучения модели.

CAD-системы уже не первый десяток лет имеет место в проектировании. Разработчики разделяют развитие данных систем на 3 этапа.

Начиная с 70-х годов прошлого столетия начинается упорное развитие CAD-систем. Это последовало за достижениями в научно-практической работе. В ней было доказано, что проектировать сложные промышленные изделия в принципе реально. Вот именно это и стало первым этапом развития CAD-систем.

В ходе первого этапа те люди, которые работали на CAD, CAM и САЕ-системах, использовали графические терминалы. Они присоединялись к большим серверам, производителями которых в те времена являлись такие компании как IBM и Control Data. В те времена эти самые сервера были не такими надежными, как сейчас. У них был один большой недостаток. Когда нужно было системный ресурс дать большому количеству сотрудников, то на центральный процессор накладывалась огромная нагрузка, которая мешала штатному функционированию системы. В дальнейшем эта проблема была решена.

Подводя итоги первого этапа, разработчики сделали ряд открытий. Им удалось развить проектирование печатных плат и слоев микросхем на такой уровень, что стало возможно создавать сложные интегрированные микросхемы.

Также на первом этапе стал происходить переход систем с больших серверов на персональные компьютеры.

Начиная с 80-х годов прошлого столетия начинается разделение CAD-систем на специализированные сектора. С этого момента начался второй этап развития систем.


В ходе второго этапа было разделение электрических и механических CAD-систем на две отличные отрасли, а именно ECAD-системы и MCAD-системы.

Также не остались в стороне производители рабочих станций для систем. Какие-то производители остались с компанией IBM, которые использовали микропроцессоры от intel, другие производители стали работать с компанией Motorola. Так как была необходимость проектировать сложные модели, то 16-разрядные системы плохо справлялись с этой задачей, тогда пользователям приходилось переходить на 32-разрядные системы, которые в те времена были на операционной системе Unix. Переход на другую операционную систему позволил проектировать сложные модели без каких-либо серьезных затруднений.

Ближе к середине 80-х годов компания Motorola почти использовала все возможности своей архитектуры. Тогда пришлось создавать новые чипы для станций, которые работают с Unix.

По итогу второго этапа развития началось создание архитектуры RISC, которая помогла повысить производительность систем.

В 90-х годах прошлого столетия компания intel начала производить свои транзисторы по более низкой цене, что привело к повышению производительности. Это связано с развитием микротехнологий, с которых и начинается третий этап развития систем.

В дальнейшем наблюдалась успешная конкуренция рабочих станций ПК с RISC или Unix платформами. Даже сейчас данные платформы широко используются для проектирования интегральных схем. Хотя в настоящее время почти всю область проектирования заняла операционная система Windows.

Разные источники пишут, что, начиная с конца 90-х годов рабочие станции платформы Windows обходят по объемам продаж платформу Unix. Именно это сейчас мы и наблюдаем.

Полная классификация показана на рисунке 9.



Рисунок 9 - Классификация CAD-систем.

Первоначально программное обеспечение CAD-систем разрабатывалось с использованием таких компьютерных языков, как Fortran и ALGOL, но ситуация существенно изменилась с развитием методов объективно-ориентированного программирования. Типичные современные системы параметрического моделирования и системы проектирования поверхностей произвольной геометрии основаны на ряде основных модулей на языке C с собственными API. CAD-системы основаны на взаимодействии данных NURBS геометрии данных граничного представления через ядро геометрического моделирования, и это можно считать основным на взаимодействии с графическим интерфейсом пользователя.


Благодаря этим связям начинает появляться новый вид проектирования, который можно назвать цифровым. Этот вид проектирования предполагает использование значительного времени процесса производства. Создание модели САD-систем предполагает, что имеется возможность перенести уже имеющийся прототип модели на компьютер при помощи томографа.

Из-за большого разнообразия работ можно выбирать, какие именно прототипы нам подойдут, цифровые или физические. Благодаря выбору возможно удовлетворить определенные потребности.

В настоящее время данные системы возможно установить на все имеющиеся платформы. Несколько из систем имеют возможность работать не нескольких платформах одновременно.

В нынешние времена много программ, которые используются для CAD-систем, не нуждаются в каких-то определенных оборудованиях. Однако некоторые систем CAD способны выполнять тяжелую графическую и вычислительную работу. В связи с этим есть возможность использовать современные видеокарты, быстрые процессоры и большой объем оперативной памяти.

Для проектирования деталей или каких-либо элементов человек обычно использует компьютерную мышь. Есть возможно при проектировании использовать ручки и графические планшеты.

В настоящее время появилась возможность для проектирования использовать 3D очки. Раньше такие очки невозможно было использовать из-за серьезных ограничений при использовании программ, но с течением времени такая возможность стала доступной. Теперь же использование 3D очков позволяет детальнее изучить проект, чтобы избавиться от малейших ошибок.

Автоматизация технологической подготовки производства. CAM-системы.

Современный промышленный процесс невозможно представить без автоматизации технологической подготовки производства. Ручная обработка деталей и изделий сегодня заменяется компьютерными системами, основной задачей которых является создание электронных моделей изделий, создание управляющих программных кодов и автоматическая подача команд обработке деталей и изделий на специализированных станках.

САМ-системы представляют собой средства, с помощью которых реализуется подготовка производства изделий. За счет данных систем производится автоматизация программирования и управления оборудованием. В русском языке имеется аналог данного термина, а именно АСТПП, что означает Автоматизированная Система Технологической Подготовки Производства. В нее также, как и в САПР входят такие задачи, как создание технологической документации, которая доставляется до