Файл: В процессе прохождения учебной практики студент должен.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 30.11.2023
Просмотров: 57
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Введение
Учебная практика является частью учебного процесса и эффективной формой подготовки будущего специалиста к трудовой деятельности. Она имеет важнейшее значение в процессе подготовки высококвалифицированных кадров, способных решать задачи современного производства.
Учебная практика проходила на заводе АО ААК «ПРОГРЕСС» им. Н. И. Сазыкина». Арсеньевская Авиационная Компания «ПРОГРЕСС» им. Н. И. Сазыкина — авиастроительная компания, расположенная в городе Арсеньев в Приморском крае, одно из крупнейших предприятий аэрокосмической промышленности РФ. Входит в холдинг АО «Вертолёты России».
Сегодня ААК «Прогресс» выпускает одну из самых совершенных боевых машин в своем классе – разведывательно-ударные вертолеты Ка-52 «Аллигатор». Ка-52 поставляется ВВС России и может предлагаться на экспорт. Также ААК «Прогресс» ведет подготовку к производству военно-морской модификации этого вертолета – Ка-52К. Всего на заводе расположено 30 цехов основного и вспомогательного производства.
ААК «Прогресс» участвует в производственной кооперации с другими предприятиями холдинга «Вертолеты России» и получает заказы на выполнение литейных работ для других производств.
Цель прохождения учебной практики: формирование, закрепление, развитие первичных практических навыков и общепрофессиональных компетенций в ходе выполнения отдельных видов самостоятельных работ, составляющих основу будущей профессиональной деятельности и связанных с организацией процесса сбора и обработки информации в профессиональной информационной среде
В процессе прохождения учебной практики студент должен:
- показать умения по сбору и обработке информации, в т. ч. с использованием программного обеспечения;
- познакомится с базовым предприятием и со специальностью;
- изучить инструкции и порядок организации труда и техники безопасности на рабочих местах;
- ознакомится с общей структурой производственного предприятия и номенклатурой аппаратов данного предприятия.
-
Инструментальные материалы
История развития обработки металлов показывает, что одним из эффективных путей повышения производительности труда в машиностроении является применение новых инструментальных материалов. Например, применение быстрорежущей стали вместо углеродистой инструментальной, позволило увеличить скорость резания в 2...3 раза. Это потребовало существенно усовершенствовать конструкцию металлорежущих станков, прежде всего, увеличить их быстроходность и мощность. Аналогичное явление наблюдалось также при использовании в качестве инструментального материала твердых сплавов.
Инструментальный материал должен иметь высокую твердость, чтобы в течение длительного времени срезать стружку. Значительное превышение твердости инструментального материала по сравнению с твердостью обрабатываемой заготовки должно сохраняться и при нагреве инструмента в процессе резания. Способность материала инструмента сохранять свою твердость при высокой температуре нагрева определяет его красностойкость (теплостойкость). Режущая часть инструмента должна обладать большой износостойкостью в условиях высоких давлений и температур.
Важным требованием является также достаточно высокая прочность инструментального материала, так как при недостаточной прочности происходит выкрашивание режущих кромок либо поломка инструмента, особенно при их небольших размерах.
Инструментальные материалы должны обладать хорошими технологическими свойствами, т.е. легко обрабатываться в процессе изготовления инструмента и его переточек, а также быть сравнительно дешевыми. В настоящее время для изготовления режущих элементов инструментов применяются инструментальные стали (углеродистые, легированные и быстрорежущие), твердые сплавы, минералокерамические материалы, алмазы и другие сверхтвердые и абразивные материалы.
-
Требования к инструментальным материалам
К инструментальным материалам предъявляют множество требований, рассмотрим основные из них.
Твердость инструментального материала должна быть выше твердости обрабатываемого не менее чем в 1,4 — 1.7 раза.
При резании металлов выделяется значительное количество теплоты, и режущая часть инструмента нагревается. Поэтому, инструментальный материал должен обладать высокой теплостойкостью. Способность материала сохранять высокую твердость при температурах резания называется теплостойкостью. Увеличение уровня теплостойкости инструментального материала позволяет ему работать с большими скоростями резания (таблица 2.1).
Таблица 2.1 – Теплостойкость и допустимая скорость резания инструментальных материалов
Материал | Теплостойкость, К | Допустимая скорость при резании Стали 45 м/мин |
Углеродистая сталь | 473 – 523 | 10 – 15 |
Легированная сталь | 623 – 673 | 15 – 30 |
Быстрорежущая сталь | 873 – 823 | 40 – 60 |
Твердые сплавы: | ||
Группа ВК | 1173 – 1200 | 120 – 200 |
Группы ТК и ТТК | 1273 – 1300 | 150 – 250 |
безвольфрамовые | 1073 – 1100 | 100 – 300 |
с покрытием | 1273 – 1373 | 200 – 300 |
Керамика | 1473 – 1500 | 400 – 600 |
Важным требованием является достаточно высокая прочность инструментального материала. Если высокая твердость материала рабочей части инструмента не обеспечивается необходимой прочностью, то это приводит к поломке инструмента и выкрашиванию режущих кромок.
Инструментальный материал должен иметь высокую износостойкость при повышенной температуре, т.е. обладать хорошей сопротивляемостью истиранию обрабатываемым материалом, которая проявляется в сопротивлении материала контактной усталости.
Необходимым условием достижения высоких режущих свойств инструмента является низкая физико-химическая активность инструментального материала по отношению к обрабатываемому. Поэтому кристаллохимические свойства инструментального материала должны существенно отличаться от соответствующих свойств обрабатываемого материала. Степень такого отличия сильно влияет на интенсивность физико-химических процессов (адгезионно-усталостные, коррозионно-окислительные и диффузионные процессы) и изнашивание контактных площадок инструмента.
Инструментальный материал должен обладать технологическими свойствами, обеспечивающими оптимальные условия изготовления из него инструментов. Для инструментальных сталей ими являются хорошая обрабатываемость резанием и давлением; благоприятные особенности термической обработки (малая чувствительность к перегреву и обезуглероживанию, хорошие закаливаемость и прокаливаемость, минимальные деформирование и образование трещин при закалке и т.д.); хорошая шлифуемость после термической обработки.
На рис. 2.1 показано расположение основных групп инструментальных материалов по их свойствам. Из рисунка видно, что твердость и прочность инструментальных материалов – это свойства антагонисты, т.е. чем выше твердость материала, тем ниже его прочность. Поэтому набор основных свойств и определяет область и условие рационального использования инструментального материала в режущем инструменте.
1 – Принципиальная зависимость основных свойств инструментальных материалов (твердость – прочность)
Рисунок 2.1 – Классификация инструментальных материалов по их свойствам.
-
Инструментальные стали
Для режущих инструментов применяют быстрорежущие стали
, а также, в небольших количествах, заэвтектоидные углеродистые стали с содержанием углерода 0,7-1,3% и суммарным содержанием легирующих элементов (кремния, марганца, хрома и вольфрама) от 1,0 до 3,0%.
-
Углеродистые и легированные инструментальные стали
Ранее других материалов для изготовления режущих инструментов начали применять углеродистые инструментальные стали марок У7, У7А…У13, У13А. Помимо железа и углерода, эти стали содержат 0,2…0,4% марганца. Инструменты из углеродистых сталей обладают достаточной твердостью при комнатной температуре, но теплостойкость их невелика, так как при сравнительно невысоких температурах (200…250С) их твердость резко уменьшается.
-
Легированные инструментальные стали
По своему химическому составу, отличаются от углеродистых повышенным содержанием кремния или марганца, или наличием одного либо нескольких легирующих элементов: хрома, никеля, вольфрама, ванадия, кобальта, молибдена. Для режущих инструментов используются низколегированные стали марок 9ХФ, 11ХФ, 13Х, В2Ф, ХВ4, ХВСГ, ХВГ, 9ХС и др. Эти стали обладают более высокими технологическими свойствами – лучшей закаливаемостью и прокаливаемостью, меньшей склонности к короблению, но теплостойкость их равна 350…400С и поэтому они используются для изготовления ручных инструментов (разверток) или инструментов, предназначенных для обработки на станках с низкими скоростями резания (мелкие сверла, метчики).
Следует отметить, что за последние 15-20 лет существенных изменений этих марок не произошло, однако наблюдается устойчивая тенденция снижения их доли в общем объеме используемых инструментальных материалов.
-
Быстрорежущие стали
В настоящее время быстрорежущие стали являются основным материалом для изготовления режущего инструмента, несмотря на то, что инструмент из твердого сплава, керамики и СТМ обеспечивает более высокую производительность обработки.
Широкое использование быстрорежущих сталей для изготовления сложнопрофильных инструментов определяется сочетанием высоких значений твердости (до HRC68) и теплостойкости (600-650С) при высоком уровне хрупкой прочности и вязкости, значительно превышающих соответствующие значения для твердых сплавов. Кроме того, быстрорежущие стали обладают достаточно высокой технологичностью, так как хорошо обрабатываются давлением и резанием в отожженном состоянии.
В обозначении быстрорежущей стали буква Р означает, что сталь быстрорежущая, а следующая за буквой цифра – содержание средней массовой доли вольфрама в %. Следующие буквы обозначают: М – молибден, Ф – ванадий, К – кобальт, А – азот. Цифры, следующие за буквами, означают их среднюю массовую долю в %. Содержание массовой доли азота составляет 0,05-0,1%.
-
Порошковые быстрорежущие стали
Наиболее эффективные возможности повышения качества быстрорежущей стали, ее эксплуатационных свойств, и создания новых режущих материалов появились при использовании порошковой металлургии.
Порошковая быстрорежущая сталь характеризуется однородной мелкозернистой структурой, равномерным распределением карбидной фазы, пониженной деформируемостью в процессе термической обработки, хорошей шлифуемостью, более высокими технологическими и механическими свойствами, чем сталь аналогичных марок, полученных по традиционной технологии. Технологическая схема получения порошковых быстрорежущих сталей следующая: газовое распыление в порошок жидкой струи быстрорежущей стали, засыпка и дегазация порошка в цилиндрический контейнер, нагрев и ковка (или прокатка) контейнеров в прутки, окончательная резцовая обдирка остатков контейнера с поверхности прутков. Основным преимуществом порошковой технологии является резкое снижение размеров карбидов, образующихся при кристаллизации слитка в изложнице. Таким образом порошинка, полученная газовым распылением, и является микрослитком в котором не образуются крупные карбиды.
Новая технология позволяет существенно изменить схему легирования с целью направленного повышения тех или иных эксплуатационных характеристик, определяющих стойкость инструмента.
Основные примеры разработки новых составов порошковой быстрорежущей стали сводятся к возможности введения в состав до 7% ванадия и значительного, в связи с этим, повышения износостойкости без ухудшения шлифуемости. А также введение углерода с «пересыщением» до 1,7%, позволяющего получить значительное количество карбидов ванадия и высокую вторичную твердость после закалки с отпуском.
Технология порошковой металлургии также используется для получения карбидостали, которая по своим свойствам может быть классифицирована как промежуточная между быстрорежущей сталью и твердыми сплавами.