Файл: В процессе прохождения учебной практики студент должен.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 59

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


4 Твердые сплавы


Твердые сплавы являются основным инструментальным материалом, обеспечивающим высокопроизводительную обработку материалов резанием. Сейчас общее количество твердосплавного инструмента, применяемого в механообрабатывающем производстве, составляет до 30%, причем этим инструментом снимается до 65% стружки, так как скорость резания, применяемая при обработке этим инструментом в 2-5 раз выше, чем у быстрорежущего инструмента.

Твердые сплавы получают методами порошковой металлургии в виде пластин. Основными компонентами таких сплавов являются карбиды вольфрама WC, титана TiC, тантала TaC и ниобия NbC, мельчайшие частицы которых соединены посредством сравнительно мягких и менее тугоплавких связок из кобальта или никеля в смеси с молибденом. Твердые сплавы по составу и областям применения можно разделить на четыре группы.
4.1 Вольфрамокобальтовые сплавы (ВК)
Вольфрамокобальтовые сплавы (группа ВК) состоят из карбида вольфрама(WC) и кобальта. Сплавы этой группы различаются содержанием в них кобальта, размерами зерен карбида вольфрама и технологией изготовления. Для оснащения режущего инструмента применяют сплавы с содержанием кобальта 3-10%.

В таблице 4.1.1 приведены состав и характеристики основных физико-механических свойств твердых сплавов, в соответствии с ГОСТ 3882-74.
Таблица 4.1.1 - Состав и характеристики основных физико-механических свойств сплавов, на основе WC-Co (группа ВК)

Сплав

Состав сплава, %

Характеристики физико-механических свойств

WC

TaC

Co

Предел прочности при изгибе изг, Мпа, не менее

Плотность 10-3, кг/м3

HRA, не менее

ВК3

97

-

3

1176

15,0-15,3

89,5

ВК3-М

97

-

3

1176

15,0-15,3

91,0

ВК4

96

-

4

1519

14,9-15,2

89,5

ВК6

94

-

6

1519

14,6-15,0

88,5

ВК6-М

94

-

6

1421

14,8-15,1

90,0

ВК6-ОМ

92

2

6

1274

14,7-15,0

90,5

ВК8

92

-

8

1666

14,4-14,8

87,5

ВК10

90

-

10

1764

14,2-14,6

87,0

ВК10-М

90

-

10

1617

14,3-14,6

88,0

ВК10-ОМ

88

2

10

1470

14,3-14,6

88,5



При увеличении в сплавах содержания кобальта в диапазоне от 3 до 10% предел прочности, ударная вязкость и пластическая деформация возрастают, в то время как твердость и модуль упругости уменьшаются. С ростом содержания кобальта повышаются теплопроводность сплавов и их коэффициент термического расширения (рисунок 4.1.1).




1 – прочность на изгиб изг; 2 – твердость – HRA;

3 – теплопроводность – λ.

Рисунок 4.1.1 – Влияние кобальта на свойства твердого сплава группы (ВК)
Из всех существующих твердых сплавов, сплавы группы ВК при одинаковом содержании кобальта обладают более высокими ударной вязкостью и пределом прочности при изгибе, а также лучшей тепло- и электропроводностью. Однако стойкость этих сплавов к окислению и коррозии значительно ниже, кроме того, они обладают большой склонностью к схватыванию со стружкой при обработке резанием.
4.2Титановольфрамокобальтовые сплавы (ТК)
Сплавы второй группы ТК состоят из трех основных фаз: твердого раствора карбидов титана и вольфрама (TiC-WC) карбида вольфрама (WC) и кобальтовой связки. Предназначены они главным образом для оснащения инструментов при обработке резанием сталей, дающих сливную стружку. По сравнению со сплавами группы ВК они обладают большей стойкостью к окислению, твердостью и жаропрочностью и в то же время меньшими теплопроводностью и электропроводностью, а также модулем упругости.

Способность сплавов группы ТК сопротивляться изнашиванию под воздействием скользящей стружки объясняется также и тем, что температура схватывания со сталью у сплавов этого типа выше, чем у сплавов на основе WC-Co, что позволяет применять более высокие скорости резания при обработке стали и существенно повышать стойкость инструмента.

В таблице 4.2.1 приведены состав и характеристики основных физико-механических свойств сплавов в соответствии с ГОСТ 3882-74.
Таблица 4.2.1 – Состав и характеристики физико-механических свойств сплавов на основе WC-TiC-Co, группа ТК


Сплав

Состав, %

изг, Мпа

Плотность

10-3, кг/м3

HRA

не менее

WC

TiC

Co

Т30К4

66

30 -

4

980

9,5-9,8

92,0

Т15К6

79

15 -

6

1176

11,1-11,6

90,0

Т14К8

78

14 -

8

1274

11,2-11,6

89,5

Т5К10

85

6 -

9

1421

12,4-13,1

88,5

Т5К12

83

5 -

12

1666

13,1-13,5

87,0



Теплопроводность сплавов группы ТК существенно ниже, а коэффициент линейного термического расширения выше, чем у сплавов группы ВК. Соответственно меняются и режущие свойства сплавов: при увеличении содержания кобальта снижается износостойкость сплавов при резании, а при увеличении содержания карбида титана снижается эксплуатационная прочность (рисунок 4.2.1).



1 – прочность на изгиб - изг; 2 – твердость - HRA

Рисунок 4.2.1 – Влияние кобальта на свойства твердого сплава группы ТК
Поэтому такие сплавы, как Т30К4 и Т15К6, применяют для чистовой и получистовой обработки стали с высокой скоростью резания и малыми нагрузками на инструмент. В то же время сплавы Т5К10 и Т5К12 с наибольшим содержанием кобальта предназначены для работы в тяжелых условиях ударных нагрузок с пониженной скоростью резания.
4.3 Титанотанталовольфрамокобальтовые сплавы(ТТК)
Промышленные танталосодержащие твердые сплавы на основе TiC-WC-TaC-Co состоят из трех основных фаз: твердого раствора карбидов титана, вольфрама и тантала(TiC-TaC-WC), а также карбида вольфрама (WC) и кобальтовой связки.

Введение в сплавы добавок карбида тантала улучшает их физико-механические и эксплуатационные свойства, что выражается в увеличении прочности при изгибе при температуре 20С и 600-800С.

В таблице 4.3.1 приведены состав и характеристики основных физико-механических свойств сплавов в соответствии с ГОСТ 3882-74.

Таблица 4.3.1 – Состав и характеристики физико-механических свойств сплавов на основе TiC-WC-TaC-Co (группа ТТК)


Сплав

Состав, %

изг, Мпа, не менее

10-3, кг/м3

HRA,

не менее

WC

TiC

TaC

Co

TT7К12

81

4

3

12

1666

13,0-13,3

87,0

ТТ8К6

84

8

2

6

1323

12,8-13,3

90,5

ТТ10К8Б

82

3

7

8

1617

13,5-13,8

89,0

ТТ20К9

67

9,4

14,1

9,5

1470

12,0-13,0

91,0



Увеличение в сплаве содержания карбида тантала повышает его стойкость при резании, особенно благодаря меньшей склонности к лункообразованию и разрушению под действием термоциклических и усталостных нагрузок.

Поэтому танталосодержащие сплавы рекомендуются главным образом для тяжелых условий резания с большими сечениями среза, когда на режущую кромку инструмента действуют значительные силовые и температурные нагрузки, а также для прерывистого резания, особенно фрезерования.
4.4 Безвольфрамовые твердые сплавы (БВТС)
В связи с дефицитностью вольфрама и кобальта промышленность выпускает безвольфрамовые твердые сплавы на основе карбидов и карбонитридов титана с никельмолибденовой связкой (таблица 4.4.1).

Таблица 4.4.1 – Состав и характеристики физико-механических свойств безвольфрамовых твердых сплавов


Сплав

Состав, %

, г/см3

Карбид титана

Карбонитрид титана

Никель

Молибден




КНТ16

-

74

19,5

6,5

5,5-6,0

ТН20

79

-

15

6,0

5,5-6,0

КНТ16

12,6-21,0

8,5-90

1200

89

ТН20

8,4-14,7

8,5-90

1050

90


По твердости БВТС находятся на уровне вольфрамосодержащих сплавов (группы ВК), по прочностным характеристикам и особенно по модулю упругости им уступают. Твердость БВТС по Виккерсу при повышенных температурах в диапазоне температур 293-1073К несколько ниже, чем твердость вольфрамосодержащего сплава Т15К6.

Наибольшей износостойкостью обладает сплав ТН20. При точении стали 45 и стали 40Х при t=1мм и S=0,2мм/об стойкость сплава ТН20 выше стойкости сплава Т15К6, во всем диапазоне скорости резания (от 200 до 600 м/мин).

5 Режущая керамика


Промышленность выпускает четыре группы режущей керамики: оксидную (белая керамика) на основе Al2O3, оксикарбидную (черная керамика) на основе композиции Al
2O3-TiC, оксиднонитридную (кортинит) на основе Al2O3-TiN и нитридную керамику на основе Si3N4.

Основной особенность режущей керамики является отсутствие связующей фазы, что значительно снижает степень ее разупрочнения при нагреве в процессе изнашивания, повышает пластическую прочность, что и предопределяет возможность применения высоких скоростей резания, намного превосходящих скорости резания инструментом из твердого сплава. Если предельный уровень скоростей резания для твердосплавного инструмента при точении сталей с тонкими срезами и малыми критериями затупления составляет 500-600 м/мин, то для инструмента, оснащенного режущей керамикой, этот уровень увеличивается до 900-1000 м/мин.

Недостаток оксидной керамики – ее относительно высокая чувствительность к резким температурным колебаниям (тепловым ударам). Поэтому охлаждение при резании керамикой не применяют.

Режущую керамику выпускают в виде неперетачиваемых сменных пластин. Пластины изготавливают с отрицательными фасками по периметру с двух сторон. размер фаски f=0,2…0,8мм, угол ее наклона отрицательный от 10 до 30. Фаска необходима для упрочнения режущей кромки.

6 Алмазы и другие сверхтвердые материалы


В настоящее время выпускается большое количество разнообразного инструмента с использованием алмазов: шлифовальные круги, инструменты для правки шлифовальных кругов из электрокорунда и карбида кремния, пасты и порошки для доводочных и притирочных операций. Значительные по размерам кристаллы алмазов применяют для изготовления алмазных резцов, фрез, сверл и других режущих инструментов.

Алмаз представляет собой одну из модификаций углерода кристаллического строения. Алмаз – самый твердый из всех известных в природе минералов. Высокая твердость алмаза объясняется своеобразием его кристаллического строения, прочностью связей атомов углерода в кристаллической решетке, расположенных на равных и очень малых расстояниях друг от друга.

Коэффициент теплопроводности алмаза в два и более раза выше, чем у сплава ВК8, поэтому тепло от зоны резания отводится сравнительно быстро.

Синтетические алмазы могут быть различных марок, которые отличаются между собой прочностью, хрупкостью, удельной поверхностью и формой зерен. В порядке возрастания прочности, снижения хрупкости и удельной поверхности марки шлифовальных порошков из синтетических алмазов располагаются так: АС2, АС4, АС6, АС15, АС32.