Файл: Электрическая очистка газов.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 99

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Министерство науки и высшего образования Российской федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

Уфимский государственный нефтяной технический университет

Филиал ФГБОУ ВО УГНТУ в г. Стерлитамаке

Кафедра «ОНХЗ»
Реферат

по дисциплине «Основы нефтегазового дела»

на тему «Электрическая очистка газов»

Вариант 18

Выполнил: студент группы БМЗз-19-31 Казаков Д.Ю.
Проверил: К. Н. Доцент Лапонов С. В.

Стерлитамак 2021


Электрическая очистка - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах.

Загрязненные газы, поступающие в электрофильтр, всегда оказываются частично ионизованными за счет различных внешних воздействий (рентгеновских лучей, радиоактивных излучений, космических лучей, нагрева газа и др.), поэтому они способны проводить ток, попадая в пространство между двумя электродами. Величина силы тока зависит от числа ионов и напряжения между электродами. При увеличении напряжения в движение между электродами вовлекается все большее число ионов и величина тока растет до тех пор, пока в движении не окажутся все ионы, имеющиеся в газе. При этом величина силы тока становится постоянной (ток насыщения), несмотря на дальнейший рост напряжения. При некотором достаточно большом напряжении движущиеся ионы и электроны настолько ускоряются, что, сталкиваясь с молекулами газа, ионизируют их, превращая нейтральные молекулы в положительные ионы и электроны. Образовавшиеся новые ионы и электроны ускоряются электрическим полем и в свою очередь ионизируют новые молекулы газа. Этот процесс называется ударной ионизацией газа.


Ударная ионизация газа протекает устойчиво лишь в неоднородном электрическом поле, характерном для цилиндрического конденсатора (рис. 1). В зазоре между коронирующим 1 и осадительным 2 электродами создается электрическое поле убывающей напряженности с силовыми линиями 3, направленными от осадительного к коронирующему электроду или наоборот. Напряжение к электродам подается от выпрямителя 4.



Рис. 1. Схема расположения электродов в электрофильтре
Изменение силы тока между электродами по мере роста напряжения показано на рис. 2. Критическое напряжение Uкр на электродах, при котором возникает коронирующий разряд, определяется соотношением
Uкр = Eкр R1 ln R2 /R1,
где R1 и R2 - радиусы коронирующего и осадительного электродов соответственно, м; Eкр - критическая напряженность электрического поля, при которой возникает корона, В/м.


Рис. 2. Зависимость силы тока от напряжения между электродами

Величина Екр определяется по эмпирическим формулам Пика. Для коронирующего электрода положительной – полярности
Eкр=3,37 (β+0,0242 √β/R1) 106; (7)
для коронирующего электрода отрицательной полярности
Eкр=3,04 (β+0,0311 √β/R1)106; (8)
В формулах (7) и (8) β - поправка на плоскость газов в рабочих условиях,
β=(pокр ± pг)293/1,013•105(273+t),
где рокр - давление окружающей среды, Па; рг - разрежение или избыточное давление в газоходе, Па; t - температура газов, °С. Формулы Пика получены для воздуха и электрода круглого сечения. Коронирующий разряд возникает обычно при высоких напряжениях, достигающих 50 кВ и более.

Аэрозольные частицы, поступающие в зону между коронирующим и осадительным электродами, адсорбируют на своей поверхности ионы, приобретая электрический заряд, и получают тем самым ускорение, направленное в сторону электрода с зарядом противоположного знака. Процесс зарядки частиц зависит от подвижности ионов, траектории движения и времени пребывания частиц в зоне коронирующего заряда. Учитывая, что в воздухе и дымовых газах подвижность отрицательных ионов выше, чем положительных, электрофильтры обычно делают с короной отрицательной полярности. Время зарядки аэрозольных частиц невелико и измеряется долями секунды. Необходимо отметить, что частицы, поступающие в электрофильтр, обычно уже имеют небольшой заряд, полученный за счет трения о стенки трубопроводов и оборудования. Этот заряд (трибозаряд) не превышает 5% заряда, получаемого частицей при коронном разряде.



Движение заряженных частиц к осадительному электроду происходит под действием аэродинамических сил, силы взаимодействия электрического поля и заряда частицы, силы тяжести и силы давления электрического ветра.

Под действием аэродинамических сил частица движется по направлению основного потока газа со скоростью ωг, близкой к скорости газа, которая составляет 0,5-2 м/с.

Основной силой, вызывающей движение частицы к осадительному электроду, является сила взаимодействия между электрическим полем и зарядом частицы. Расчеты скорости этого движения показывают, что ее значение зависит главным образом от размеров частиц и напряженности электрического поля Е. Расчетные значения скорости приведены ниже:


Диаметр частиц, мкм

0,4

1,0

2,0

10,0

30,0

ωэ, м/c, при Е=15•104 В/м

0,012

0,013

0,015

0,075

0,15

ωэ, м/c, при Е=30•104 В/м

0,025

0,030

0,060

0,30

0,60


Силы тяжести не оказывают заметного влияния на траекторию движения частиц пыли. За время пребывания в электрофильтре (10-15 с) частицы размером 10 мкм падают всего на 3-5 см, поэтому в расчетах силы тяжести обычно не учитывают.

Электрический ветер обусловлен механическим воздействием движущихся ионов на молекулы газа и частицы пыли. Электрический ветер возникает в местах генерации ионов, т. е. у коронирующих электродов, и вызывает циркуляцию газа в межэлектродном промежутке со скоростью до 0,5-1,0 м/с. Электрический ветер оказывает влияние на движение частиц к осадительным электродам и на перемешивание ионов и взвешенных частиц в межэлектродном пространстве. Однако из-за отсутствия методики расчета электрического ветра его влиянием на движение частиц пренебрегают.

Таким образом, отрицательно заряженные аэрозольные частицы движутся к осадительному электроду под действием аэродинамических сил и электрических сил, а положительно заряженные частицы оседают на отрицательном коронирующем электроде. Ввиду того что объем внешней зоны коронного разряда во много раз больше объема внутренней
, большинство частиц пыли получает заряд отрицательного знака. Поэтому основная масса пыли осаждается на положительном осадительном электроде и лишь относительно небольшая на отрицательном коронирующем электроде. Важное значение на процесс осаждения пыли на электродах имеет электрическое сопротивление слоев пыли. По величине электрического сопротивления пыль делят на:

1) пыли с малым удельным электрическим сопротивлением (<104 Ом•см), которые при соприкосновении с электродом мгновенно теряют свой заряд и приобретают заряд, соответствующий знаку электрода, после чего между электродом и частицей возникает сила отталкивания, стремящаяся вернуть частицу в газовый поток. Противодействует этой силе только сила адгезии и, если она оказывается недостаточной, то резко снижается эффективность процесса очистки;

2) пыли с удельным электрическим сопротивлением от 104 до 1010 Ом•см хорошо осаждаются на электродах и легко удаляются с него при встряхивании;

3) пыли с удельным электрическим сопротивлением более 1010 Ом•см труднее всего улавливаются в электрофильтрах, так как на электродах частицы разряжаются медленно, что в значительной степени препятствует осаждению новых частиц.

В реальных условиях снижение удельного электрического сопротивления пыли можно осуществить увлажнением запыленного газа.

Теоретическое определение эффективности очистки запыленного газа в электрофильтрах обычно проводится по формуле Дейча:

η=1-е-ωэFуд; (9)
где Fуд - удельная поверхность осадительных электродов, равная отношению поверхности осадительных элементов к расходу очищаемых газов в м2•с/м3. Из формулы (9) следует, что эффективность очистки газа в электрофильтрах возрастает с ростом значения показателя степени ωэ Fуд:


ωэFуд

3,0

3,7

3,9

4,6

η

0,95

0,975

0,98

0,99


Конструкцию электрофильтров определяют условия работы: состав и свойства очищаемых газов, концентрация и свойства взвешенных частиц, параметры газового потока, требуемая эффективность очистки и т. д.

В промышленности используется несколько типовых конструкций сухих и мокрых электрофильтров [9], применяемых для очистки технологических выбросов. Сухие электрофильтры типа УГ (унифицированные горизонтальные) рекомендуется применять для тонкой очистки газов от пыли различных видов. В корпусе электрофильтра установлены три группы коронирующих и осадительных электродов. Равномерный подвод газа к электродам достигается установкой на входе в фильтр распределительной решетки. Периодическая очистка коронирующих и осадительных электродов производится встряхивающим механизмом.

Таблица 1.

Техническая характеристика

УГ

С

Допустимая входная концентрация пыли (УГ) или смолы (С) в газе, г/м3

50

0,1

Эффективность очистки

До 0,999

До 0,99

Гидравлическое сопротивление, Па

150

200

Наибольшая температура газов, °С

250

50

Удельный расход электроэнергии на очистку 1000 м3/ч газа, кВт•ч

0,3

0,45

Производительность по газу, тыс. м3/ч

36-950

18-36

Электрофильтры используют и для тонкой очистки газа от масляных туманов, смолы и пыли в различных отраслях промышленности. На рис. 3 показана конструктивная схема мокрого электрофильтра типа С, применяемого для очистки генераторных и коксовых газов. В корпусе 3 установлены коронирующие и осадительные электроды 2, к которым подводится газ через распределительные решетки. В верхней части фильтра установлены смолоулавливающие зонты 4. Уловленная на электродах смола стекает в бункер и через гидрозатвор выводится из аппарата. При загустении смолы аппарат разогревают паром. Технические характеристики электрофильтров типа С приведены в табл. 1.


Рис. 3. Электрофильтр типа С

электрофильтр напряжение газ очистка

Для очистки вентиляционных выбросов и рециркуляционного воздуха от различных пылей, а также приточного атмосферного с малой концентрацией загрязнений применяются двухзонные электрофильтры типа ФЭ, РИОН и др. Поток воздуха в таком фильтре проходит последовательно ионизационную зону, зону осаждения и противоуносный пористый фильтр. Накопленная пыль периодически смывается водой. Эффективность пылеулавливания до 0,95, гидравлическое сопротивление чистого фильтра 30-50 Па, производительность по воздуху 1000 м3/ч и более, входная концентрация загрязнений не более 10 мг/м3.

Принципиальная схема двухзонного электрофильтра показана на рис. 4. Загрязненный газ проходит ионизатор, в состав которого входят положительные и отрицательные 2 электроды. Ионизатор выполнен так, чтобы при скорости около 2 м/с частицы пыли успели зарядиться, но еще не осели на электроды. Зарядившиеся частицы