Файл: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Астраханский государственный технический университет.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 42

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Ближе к середине 80-х годов компания Motorola почти использовала все возможности своей архитектуры. Тогда пришлось создавать новые чипы для станций, которые работают с Unix.

По итогу второго этапа развития началось создание архитектуры RISC, которая помогла повысить производительность систем.

В 90-х годах прошлого столетия компания intel начала производить свои транзисторы по более низкой цене, что привело к повышению производительности. Это связано с развитием микротехнологий, с которых и начинается третий этап развития систем.

В дальнейшем наблюдалась успешная конкуренция рабочих станций ПК с RISC или Unix платформами. Даже сейчас данные платформы широко используются для проектирования интегральных схем. Хотя в настоящее время почти всю область проектирования заняла операционная система Windows.

Разные источники пишут, что, начиная с конца 90-х годов рабочие станции платформы Windows обходят по объемам продаж платформу Unix. Именно это сейчас мы и наблюдаем.

Полная классификация показана на рисунке 9.



Рисунок 9 - Классификация CAD-систем.

Первоначально программное обеспечение CAD-систем разрабатывалось с использованием таких компьютерных языков, как Fortran и ALGOL, но ситуация существенно изменилась с развитием методов объективно-ориентированного программирования. Типичные современные системы параметрического моделирования и системы проектирования поверхностей произвольной геометрии основаны на ряде основных модулей на языке C с собственными API. CAD-системы основаны на взаимодействии данных NURBS геометрии данных граничного представления через ядро геометрического моделирования, и это можно считать основным на взаимодействии с графическим интерфейсом пользователя.

Благодаря этим связям начинает появляться новый вид проектирования, который можно назвать цифровым. Этот вид проектирования предполагает использование значительного времени процесса производства. Создание модели САD-систем предполагает, что имеется возможность перенести уже имеющийся прототип модели на компьютер при помощи томографа.

Из-за большого разнообразия работ можно выбирать, какие именно прототипы нам подойдут, цифровые или физические. Благодаря выбору возможно удовлетворить определенные потребности.

В настоящее время данные системы возможно установить на все имеющиеся платформы. Несколько из систем имеют возможность работать не нескольких платформах одновременно.


В нынешние времена много программ, которые используются для CAD-систем, не нуждаются в каких-то определенных оборудованиях. Однако некоторые систем CAD способны выполнять тяжелую графическую и вычислительную работу. В связи с этим есть возможность использовать современные видеокарты, быстрые процессоры и большой объем оперативной памяти.

Для проектирования деталей или каких-либо элементов человек обычно использует компьютерную мышь. Есть возможно при проектировании использовать ручки и графические планшеты.

В настоящее время появилась возможность для проектирования использовать 3D очки. Раньше такие очки невозможно было использовать из-за серьезных ограничений при использовании программ, но с течением времени такая возможность стала доступной. Теперь же использование 3D очков позволяет детальнее изучить проект, чтобы избавиться от малейших ошибок.

Автоматизация технологической подготовки производства. CAM-системы.

Современный промышленный процесс невозможно представить без автоматизации технологической подготовки производства. Ручная обработка деталей и изделий сегодня заменяется компьютерными системами, основной задачей которых является создание электронных моделей изделий, создание управляющих программных кодов и автоматическая подача команд обработке деталей и изделий на специализированных станках.

САМ-системы представляют собой средства, с помощью которых реализуется подготовка производства изделий. За счет данных систем производится автоматизация программирования и управления оборудованием. В русском языке имеется аналог данного термина, а именно АСТПП, что означает Автоматизированная Система Технологической Подготовки Производства. В нее также, как и в САПР входят такие задачи, как создание технологической документации, которая доставляется до рабочих мест с целью производства изделия, и доставка регламента процесса изготовления изделий.

Системы САМ обеспечивают своевременную и точную обработку деталей и изделий, повышают эффективность производственных процессов и уменьшают затраты на производство. Системы САМ поддерживают широкий спектр производственных операций.

К одним из важных задач, которые реализуются с помощью САМ-систем, можно отнести:

  • проектировка технологического процесса;

  • объединение программ управления с числовыми программами управления;

  • моделирование процессов обработки;

  • построение траекторий движения инструмента и заготовки в процессе обработки;

  • расчет оптимального времени, для обработки изделия.


Рынок САМ-систем представлен различными производителями, которые в той или иной мере имею как положительные, так и отрицательными сторонами.

Основные производители CAM-систем являются такие компании как: Dassault, Siemens, Planit. Они занимают ведущие места в поставках САМ-систем. Уровень мирового рынка САМ-систем можно увидеть на рисунке 10.



Рисунок 10 - Рынок САМ-систем.

Но какая же САМ-система является самой лучшей?

Чтобы произвести сравнительную характеристику САМ-систем и определить, какая САМ-система является наилучшей, нужно определить по каким параметрам будет производиться сравнение. К таким параметрам будут относиться функционал, системные требования и интерфейс.

Для сравнительной характеристики возьмем три довольно известные САМ-системы, а именно: ESPRIT, ADEM и SprutСАМ.

Перечисленные САМ-системы являются разработками российского производства. Это позволяет говорить, что в России тоже имеются свои довольно неплохие САМ-системы.

Программа ESPRIT является высокопроизводительной, многофункциональной, обучающей системой среднего класса. У нее имеется русифицированный интерфейс и справочная система. Лучше остальных программных комплексов поддерживает электроэрозионные станки. [4]

Программа ADEM была разработана еще в 90-х годах прошлого столетия. Внутри программы заложены основные системы для проектирования, программирования и конструирования моделей.

SprutCAM в отличие от многих существующих в мире систем поддерживает разработку управляющего программного обеспечения для многокоординатных фрезерных станков, а также используется для управление процессами в нефтегазовой отрасли, что выделяет ее их многих САМ-систем. Все преимущества российского разработчика: удобный интерфейс, обновление версий, поддержка, приемлемая цена, наличие справочной литературы. [4]

Функционал трех основных САМ-систем представлены на рисунке 11.



Рисунок 11 - Функционал трех основных САМ-систем.

Из проведенного анализа, можно сделать вывод, что ADEM и SprutСАМ имеют больше возможных функций.

Какие же минимальные системные требования рекомендуют поставить производители САМ-систем для своих систем?

На этот вопрос можно ответить если посмотреть на рисунок 12


Рисунок 12 – Системные требования САМ-систем.

После проведенного анализа системных требований САМ-систем, можно сделать вывод, что по большей мере у всех представленных САМ-систем схожие системные требования. САМ-системы ADEM и SprutCАМ для своего функционирования используют более требовательные процессоры, но ADEM использует меньше оперативной памяти, чем SprutСАМ. Для работы на ESPRIT нужен менее требовательный процессор, но объём оперативной памяти в три раза выше чем в ADEM и на 4 Гб меньше, чем в SprutСАМ.

Выполнив визуальный анализ каждой системы, мною был сделан субъективный анализ. Более-менее понятный интерфейс наблюдается у системы SprutCAM. У нее имеется большой ассортимент различных функций, которые помогают при проектировании. В ней также удобно и приятно работать. Чтобы увидеть выполненные операции технологу не обязательно заполнять определенные параметры. Все эти параметры можно будет заполнить чуть позже. Еще один из плюсов SprutCAM – это наличие генератора постпроцессоров. Благодаря нему появляется возможность создать управляющую программу разного формата и для огромного количества стоек с ЧПУ.

Что касается интерфейсов ESPRIT и ADEM. То тут можно также сказать, что интерфейсы являются простыми, но менее понятными. Допустим в ADEM имеется более наглядный процесс просмотра модели, когда модель уже находится на рабочем станке.

Что же касается ESPRIT, то в нем реализована такая вещь, как возможность переносить проекты от одного станка к другому и при этом потратить минимальное количество времени. Это означает, что можно будет заменять одну модель станка на другую, и задачи сами перестроятся под новый станок.

Ниже представлена таблица 2 с сравнительными характеристиками выбранных CAM-систем.

Таблица 2.Сравнительная характеристика выбранных САМ-систем.

Название системы

Наибольший функционал

Наименьшие системные требования

Удобство интерфейса

ESPRIT

-

+

+

ADEM

-

+

-

SprutСАМ

+

-

+


Проведя небольшой анализ систем, появляется возможность подвести итог и сделать вывод. Нельзя конкретно сказать какая из систем является лучшей, потому что у каждой есть свои плюсы и минусы. У какой-то системы высокий функционал, но при этом высокие требования к самой системе, в которой используется программа. У какой-то системы слабее функционал, но и она не требует слишком много к себе. Все зависит от того, что именно собираются проектировать. Потому что для простых деталей не имеет смысла ставить сложную систему, в которой имеются функции, с которыми даже не будут работать. Лучше поставить более простую систему и потратить на это меньше времени и денег.

САМ-системы позволяют существенно ускорить производственные процессы и снизить производственные затраты. Также они принципиально важны для того, чтобы улучшить качество и точность изготовления деталей и изделий. Кроме того, системы САМ позволяют быстро менять параметры обработки, что делает возможным производство деталей и изделий в различных вариантах.

Без сомнения, автоматизация технологической подготовки производства является ключевым фактором, который определяет эффективность производства. САМ-системы играют важную роль в создании современных качественных изделий, их точной обработке и снижении затрат на их производство.

Интеграция CAD, CAM, PDM систем и процесса производства на основе PLM системы.

Еще совсем недавно на производствах СAD, CAM, CAE и другие системы были желательны к использованию, но не обязательны. В связи с этим некоторые производства не использовали данные системы. Тогда не было доказано, что данные системы эффективны в использовании. Но с течением времени все изменилось. Теперь необязательные системы являются основополагающими для нормального функционирования производства. В связи с тем, что имеются большое количество систем, которые нужны для производства, стал вопрос об объединении всех систем в одно целое. С этой целью появляются системы управления жизненным циклом продукции – PLM-системы.

Для того, чтобы понять, как интегрировать вышеизложенным мною систем, нужно разобраться что представляет из себя PLM-системы.

PLM-системы представляют собой системы управления жизненным циклом продукции. С помощью данных систем появляется возможность управлять данными о продукции в информационном пространстве. PLM-системы проходят все стадии жизненного цикла продукции, начиная с проектировки и заканчивая доставки изделия до заказчика.