Файл: Реферат Экскаваторные синхронные двигатели принцип работы, применение, характеристики.docx
Добавлен: 30.11.2023
Просмотров: 59
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
«Университет»
Факультет энергетики и электротехники
Кафедра теоретических основ электротехники и релейной защиты и
автоматики
Реферат
«Экскаваторные синхронные двигатели: принцип работы, применение, характеристики»
Выполнил студент гр.
Преподаватель:
СОДЕРЖАНИЕ
Введение............................................................................................................................................3
1. Синхронный двигатель................................................................................................................5
2. Принцип действия синхронного двигателя...............................................................................8
3. Общие сведения об обмотке двигателя......................................................................................9
4. Пуск синхронного двигателя......................................................................................................12
5. Обслуживание и ремонт электродвигателя...............................................................................13
6. Основы электробезопасности при проведении ремонтных работ..........................................16
Заключение.......................................................................................................................................19
Список литературы..........................................................................................................................20
ВВЕДЕНИЕ
Исключительное значение электротехники в наши дни объясняется тем, что средствами электротехники относительно просто решаются важнейшие технические проблемы в во всех отраслях (промышленности, быту, транспорте, передачи информации, медицине и т.д.) например передача на дальние расстояния и преобразование больших количеств энергии и передача сигналов на практически неограниченные расстояния.
Электротехническая промышленность выпускает в год миллионы электрических машин для всех отраслей народного хозяйства. И конечно же от специалистов в области электромеханики требуются глубокие знания обслуживания и ремонта электрических машин, а также их правильной эксплуатации. Без электрических машин не может развиваться ни одна комплексная научная программа. Электрические машины работают в космосе и глубоко под землей, в океане и активной зоне атомных реакторов, в животноводческих помещениях и медицинских кабинетах. Без преувеличения можно сказать, что электромеханика определяет технический прогресс в большинстве основных отраслей промышленности.
Прогресс в развитии электромашиностроения зависит от успехов в области теории электрических машин. Глубокое понимание процессов электромеханического преобразования энергии необходимо не только инженерам-электромеханикам, создающим и эксплуатирующим электрические машины, но и многим специалистам, деятельность которых связана с электромеханикой.
Возникновение электротехники как прикладной науке предшествовал довольно длительный период (начиная примерно с 16 века) накопления знаний об электричестве и магнетизма.
Начало практическому примеру электрического освещения положило изобретение в 1876 году П.Н. Яблочковым электрической свечи. Им же впервые был внедрен в практику переменный ток, осуществлено “дробление” электрической энергии посредствам трансформаторов с централизованного производства и распределения электроэнергии.
Работы М.О. Даливо–Добровольского, который изобрел трехфазный трансформатор и асинхронный двигатель (1889-1891 г.) и детально разработавшего технику трехфазной системы, которая по сегодняшний день остается основным способом передачи и распределения электроэнергии на всем земном шаре.
Электроэнергия является стержнем строительства экономики современного общества, играет ведущую роль в развитии всех отраслей народного хозяйства, в осуществлении всего технического процесса.
В настоящее время перед электромеханиками стоят трудные и интересные проблемы, которые требуют глубокого знания теории, проектирования и технологии изготовления электрических машин.
1. СИНХРОННЫЙ ДВИГАТЕЛЬ
Синхронные двигатели имеют постоянную частоту вращения, и используется там, где нет необходимости в регулировании частоты или она должна быть постоянной. Синхронные двигатели имеют большую мощность (50–100 кВт и более) и применяется на металлургических заводах, в шахтах и других предприятиях для приведения в движение насосов, компрессоров и т.д. Достоинством синхронного двигателя является возможность его работы с емкостным (опережающим) током статора. Такой двигатель будет улучшать коэффициент мощности предприятия
Имеется также специальные синхронные микродвигатели мощностью от долей ватта до нескольких десятков ватт, используемые в схемах автоматики, звукозаписи, для вращения лент самопищущих приборов и в других случаях, требующих строгого постоянства частоты вращения.
Синхронная машина, работающая в режиме генератора или двигателя, может служить источником реактивной мощности.
Синхронный двигатель состоит из неподвижного статора и вращающегося ротора. В пазах статора размещена обмотка переменного тока
, получающая питание от сети, а в роторе – обмотка постоянного тока.
В зависимости от мощности двигателя ротор выполняют с различной системой возбуждения. Синхронные двигатели средней и большой мощности выполняют с электромагнитным возбуждением. В этом случае расположенная на роторе обмотка возбуждения получает питание от источника постоянного тока через контактные кольца. Для двигателей малой мощности применяют постоянные магниты без обмотки возбуждения, что упрощает конструкцию ротора и повышает надежность двигателей.
Рис.1 Устройство синхронного двигателя небольшой мощности:
1 – корпус; 2 – сердечник статора; 3 – обмотка статора; 4– ротор;
5 – вентилятор; 6 – выводы обмотки статора; 7 – контактные кольца;
8 – щетки; 9 – возбудитель.
Ротор синхронных двигателей выполняют с явновыраженными и неявновыраженными полюсами.
Явнополюсные, то есть с ровно выраженными полюсами, при котором каждый полюс выполняют в виде отдельного узла, состоящего из сердечника, полюсного наконечника и полюсной катушки. Все полюса закрепляют на ободе, являющимся также и ярмом, через которые закрепляются магнитные патоки полюсов. Сердечники полюсов явнополюсного ротора обычно собирают из штамповой листовой конструкционной стали толщиной 1 - 1,5 мм. Обод явнополюсного ротора выполняют массивным (литым или сварным) или же шлихтованным из листов конструкционной стали 1-6 мм. Листы стягивают шпильками.
Рис.2 Явнополюсной ротор.
Неявнополюсной ротор имеет вид удлиненного стального цилиндра. Сердечник неявнополюсного ротора изготовляют в виде цельной стальной поковки в месте с хвостовиками или же делают сборными. Обмотки возбуждения неявнополюсного ротора занимает лишь две трети его поверхности (по периметру). Оставшееся одна треть внутренности двигателя остается для ротора. Для защиты лобовых частей обмотки ротора от разрушения действием центробежных сил ротор с двух сторон прикрывает стальными бандажными кольцами (каплями) изготовленными обычно из немагнитной стали.
Рис.3 Неявнополюсной ротор.
2. ПРИНЦИП ДЕЙСТВИЯ СИНХРОННОГО ДВИГАТЕЛЯ
Оболочка статора синхронного двигателя подключается к сети переменного тока, а оболочка ротора к источнику постоянного тока. В синхронном двигателе момент на валу создается благодаря взаимодействию вращающегося магнитного поля статора и постоянного поля ротора. В отличие от асинхронного двигателя частота вращения ротора в синхронном двигателе не зависит от нагрузки и равна частоте вращения поля статора. Если ротор двигателя начнет вращаться с частотой, меньшей, чем частота поля статора, то в какой-то момент времени намагниченные полюса ротора расположатся против одноименных полюсов вращающегося поля статора. В этом случае нарушится связь между полюсами статора и ротора из-за их взаимного отталкивания.
Вращение ротора только с синхронной частотой – характерная особенность синхронных двигателей.
Для пуска синхронного двигателя в полюсных наконечниках ротора уложена пусковая обмотка, выполненная наподобие короткозамкнутой обмотки ротора асинхронных двигателей. Наличие ее позволяет пускать двигатель как асинхронный. При достижении ротором угловой скорости в его обмотку подает постоянный ток, и двигатель входит в синхронизм.
Также для пуска синхронных двигателей используют генераторы постоянного тока (имеющие общий вал с двигателем) либо тиристорные выпрямители, обеспечивающую более высокую (по сравнению с электромашинными возбудителями) надежность работы двигателя.
Синхронные двигатели малой мощности (до 2 кВт) иногда возбуждают постоянными магнитами или реактивным током статора.
Рис.4 Принцип действия синхронного двигателя:
1 статор(катушка возбуждения);2 ротор.
3.ОБЩИЕ СВЕДЕНИЯ ОБ ОБМОТКЕ ДВИГАТЕЛЯ
Обмотка электрической машины является основной ее частью. Надежность машин главным образом определяется качеством обмоток. Поэтому к ним предъявляются высокие требования электрической и механической прочности, влагостойкости и нагрева-стойкости.
Обмотки электрической машины является система проводников, соединенных между собой по определенной схеме и вложены в пазы сердечника. Обмотка состоит из витков, катушек и катушечных групп, проводники которых изолируют от корпуса машин корпусной изоляции и друг от друга межвитковой изоляцией.
Виток обмотки состоит из двух последовательно соединенных между собой проводников, уложенных в два паза сердечника. Число витков обмотки определяется в зависимости от номинального напряжения в машине, в площадь сердечника их от мощности машины.
Катушка обмотки представляет собой несколько последовательно соединенных витков и уложенных соответствующими сторонами в два паза сердечника. Те части катушки, которые лежат в пазах сердечника, называются пазовыми (активными), а расположенные вне пазов лобовыми частями катушек. Катушки могут быть мягкими (намотанными из изолированного провода круглого сечения), или жесткими (намотанными или согнутыми из проводов прямоугольного сечения).
Катушечная группа состоит из нескольких последовательно соединенных катушек одной фазы, расположенных в соединенных пазах сердечника.
Для обмоток провода изготовленных из электротехнической отожженной краски ММ (медная мягкая) и МТ (медная твердая). Провода изолируют хлопчатобумажной пряжей, лаками, стекловолокном и другим. Чаще всего применяют медные провода, покрытые эмалевой изоляцией. Например, провода ПЭЛ – эмалированные масленым лаком и покрытие одним слоем нитей из хлопчатобумажной пряжи, ПЭЛЛО – изолированы масленым лаком и одним слоем лавсановых нитей. Применяются так же обмоточные провода марок АПВ, АПБД, ПЭТВА, и др.
В качестве пазовой изоляции и прокладок применяют электроизоляционный картон и лакоткани.
Для защиты обмоток от механических повреждений чаще всего используют хлопчатобумажные ленты, пленочные материалы, стеклоленту.
Для пропитки изготовленных обмоток используют разные лаки на основе смол, битумов, высыхающих масел и т.д. Так для пропитки обмоток применяют масляно-битумные лаки. Они создают прочность, повышают влагостойкость и теплопроводность обмоток. Покрывные масляно-битумные и масляно-стойкие лаки создают на поверхности обмоток защитные влагостойкие, маслостойкие и термостойкие покрытия.
После ремонта обмотки электрических машин покрывают эмалью с целью повышения влагостойкости и маслостойкости обмотки. Для этого используют разные эмали, например, глифтале масляная, которая хорошо цементирует обмотку, повышает ее механическую прочность.
Обмотка электрических машин подразделяют на петлевые, волновые и комбинированные. Наиболее распространенные в статорных обмотках получили петлевые обмотки, а в фазных обмотках асинхронных машин - волновые.
Способы укладки обмотки в пазы зависит от формы пазов.
Закрытые пазы исполняют в фазных и короткозамкнутых роторах асинхронных двигателей. Провода в пазы вставляют с торца сердечника.
Полузакрытые пазы – в статорах машин переменного тока мощностью до 100 кВт, роторах и якорях машин мощностью до 15 кВт, провода круглого сечения всыпают по одному через узкую прорезь паза.
Полуоткрытые пазы применяют также в статорах машин переменного тока мощностью 120 – 400 кВт, а пазы вкладывают жесткие катушки, разделенные в каждом слое на две.
Открытые пазы используют в якорях постоянного тока мощность свыше 200 кВт, роторах асинхронных машин мощностью до 100 кВт и статорах асинхронных машин мощностью выше 400 кВт и крупных синхронных двигателей.
В пазы вкладывают жесткие катушки с удержанием их клиньями из дерева или других изоляционных материалов.