Файл: Руководство по стилю программирования и конструированию по.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 30.11.2023
Просмотров: 871
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Время обработки
Время обработки
Экономия
Язык
локального файла
файла по сети
времени
C++
6,04 6,64
-10%
C#
12,8 14,1
-10%
584
ЧАСТЬ V Усовершенствование кода
Конечно, эти результаты сильно зависят от скорости сети, объема трафика, рас- стояния между компьютером и сетевым диском, производительности сетевого и локального дисков, фазы Луны и других факторов.
В целом доступ к данным «в памяти» выполняется гораздо быстрее, так что дваж- ды подумайте, прежде чем включать операции ввода/вывода в фрагменты, к быс- тродействию которых предъявляются повышенные требования.
Замещение страниц Операция, заставляющая ОС заменять страницы памяти,
выполняется гораздо медленнее, чем операция, ограниченная одной страницей памяти. Иногда самое простое изменение может принести огромную пользу. На- пример, один программист обнаружил, что в системе, использующей страницы объемом по 4 кб, следующий цикл инициализации вызывает массу страничных ошибок:
Пример цикла инициализации, вызывающего много страничных ошибок (Java)
for ( column = 0; column < MAX_COLUMNS; column++ ) {
for ( row = 0; row < MAX_ROWS; row++ ) {
table[ row ][ column ] = BlankTableElement();
}
}
Это хорошо отформатированный цикл с удачными именами переменных, так в чем же проблема? Проблема в том, что каждая строка (row) массива
table содер- жит около 4000 байт. Если массив включает слишком много строк, то при каж- дом обращении к новой строке ОС должна будет заменить страницы памяти.
В предыдущем фрагменте изменение номера строки, а значит, и подкачка новой страницы с диска выполняются при каждой итерации внутреннего цикла.
Программист реорганизовал цикл:
Пример цикла инициализации, вызывающего немного страничных ошибок (Java)
for ( row = 0; row < MAX_ROWS; row++ ) {
for ( column = 0; column < MAX_COLUMNS; column++ ) {
table[ row ][ column ] = BlankTableElement();
}
}
Этот код также вызывает страничную ошибку при каждом изменении номера стро- ки, но это происходит только
MAX_ROWS раз, а не MAX_ROWS * MAX_COLUMNS раз.
Степень снижения быстродействия кода из-за замещения страниц во многом за- висит от объема памяти. На компьютере с небольшим объемом памяти второй фрагмент кода выполнялся примерно в 1000 раз быстрее, чем первый. При нали- чии большего объема памяти различие было всего лишь двукратным и было за- метно лишь при очень больших значениях
MAX_ROWS и MAX_COLUMNS.
Системные вызовы Вызовы системных методов часто дороги. Они нередко вклю- чают переключение контекста — сохранение состояния программы, восстановле- ние состояния ядра ОС и наоборот. В число системных методов входят методы,
служащие для работы с диском, клавиатурой, монитором, принтером и другими
ГЛАВА 25 Стратегии оптимизации кода
585
устройствами, методы управления памятью и некоторые вспомогательные методы.
Если вас беспокоит производительность, узнайте, насколько дороги системные вызовы в вашей системе. Если они дороги, рассмотрите следующие варианты.
쐽
Напишите собственные методы. Иногда функциональность системных мето- дов оказывается избыточной для решения конкретных задач. Заменив низко- уровневые системные методы собственными, вы получите более быстрый и компактный код, лучше соответствующий вашим потребностям.
쐽
Избегайте вызовов системных методов.
쐽
Обратитесь к производителю системы и укажите ему на низкую эффективность тех или иных методов. Обычно производители хотят улучшить свою продук- цию и охотно принимают все замечания (поначалу они могут показаться не- много недовольными, но они на самом деле в этом заинтересованы).
В программе, про оптимизацию которой я рассказал в подразделе «Когда выпол- нять оптимизацию?» раздела 25.2, использовался класс
AppTime, производный от коммерческого класса
BaseTime (имена изменены). Объекты AppTime использо- вались в программе на каждом шагу и исчислялись десятками тысяч. Через несколь- ко месяцев мы обнаружили, что объекты
BaseTime инициализировались в кон- структоре значением системного времени. В нашей программе системное время не играло никакой роли, а это означало, что мы без надобности генерировали ты- сячи системных вызовов. Простое переопределение конструктора класса
BaseTime
так, чтобы поле
time инициализировалось нулем, дало нам такое же повышение производительности, что и все остальные изменения, вместе взятые.
Интерпретируемые языки При выполнении интерпретируемого кода каждая команда должна быть обработана и преобразована в машинный код, поэтому интерпретируемые языки обычно гораздо медленней компилируемых. Вот при- мерные результаты сравнения разных языков, полученные мной при работе над этой главой и главой 26 (табл. 25-1):
Табл. 25-1. Относительное быстродействие кода,
написанного на разных языках
Время выполнения кода
Язык
Тип языка
в сравнении с кодом C++
C++
Компилируемый
1:1
Visual Basic
Компилируемый
1:1
C#
Компилируемый
1:1
Java
Байт-код
1,5:1
PHP
Интерпретируемый
>100:1
Python
Интерпретируемый
>100:1
Как видите, в плане быстродействия языки C++, Visual Basic и C# примерно одина- ковы. Код на Java выполняется несколько медленнее. PHP и Python — интерпрети- руемые языки, и код, написанный на них, обычно выполняется в 100 и более раз медленнее, чем написанный на C++, Visual Basic, C# или Java. Однако к общим ре- зультатам, указанным в этой таблице, следует относиться с осторожностью. Отно- сительная эффективность C++, Visual Basic, C#, Java и других языков во многом за- висит от конкретного кода (читая главу 26, вы сами в этом убедитесь).
586
ЧАСТЬ V Усовершенствование кода
Ошибки Наконец, еще одним источником проблем с производительностью яв- ляются некоторые виды ошибок. Какие? Вы можете оставить в итоговой версии про- граммы отладочный код (например, записывающий трассировочную информацию в файл), забыть про освобождение памяти, неграмотно спроектировать таблицы БД,
опрашивать несуществующие устройства до истечения лимита времени и т. д.
При работе над первой версией одного приложения мы столкнулись с операци- ей, выполнявшейся гораздо медленнее других похожих операций. Сделав массу попыток объяснить этот факт, мы выпустили версию 1.0, так и не поняв полнос- тью, в чем дело. Однако, работая над версией 1.1, я обнаружил, что таблица БД,
используемая в этой операции, не была проиндексирована! Простая индексация таблицы повысила скорость некоторых операций в 30 раз. Определение индекса для часто используемой таблицы нельзя считать оптимизацией — это просто хорошая практика программирования.
Относительное быстродействие
распространенных операций
Хотя нельзя с полной уверенностью утверждать, что одни операции медленнее других, не оценив их, определенные операции все же обычно дороже. Отыскивая патоку в своей программе, используйте табл. 25-2, которая поможет вам выдвинуть первоначальные предположения о том, какие фрагменты кода неэффективны.
Табл. 25-2. Быстрота выполнения часто используемых операций
Относительное время выполнения
Операция
Пример
C++
Java
Исходный показатель
i = j
1 1
(целочисленное присваивание)
Вызовы методов
Вызов метода без параметров
foo()
1
—
Вызов закрытого метода
this.foo()
1 0,5
без параметров
Вызов закрытого метода
this.foo( i )
1,5 0,5
с одним параметром
Вызов закрытого метода
this.foo( i, j )
2 0,5
с двумя параметрами
Вызов метода объекта
bar.foo()
2 1
Вызов метода производ-
derivedBar.foo()
2 1
ного объекта
Вызов полиморфного метода
abstractBar.foo()
2,5 2
Обращения к объектам
Обращение к объекту
i = obj.num
1 1
1-го уровня
Обращение к объекту
i = obj1.obj2. num
1 1
2-го уровня
Стоимость каждого
i = obj1.obj2.obj3...
неизмеряема неизмеряема дополнительного уровня
ГЛАВА 25 Стратегии оптимизации кода
587
Табл. 25-2. (продолжение)
Относительное время выполнения
Операция
Пример
C++
Java
Операции над целочислен-
ными переменными
Целочисленное присваивание
i = j
1 1
(локальная операция)
Целочисленное присваивание
i = j
1 1
(унаследованная операция)
Сложение
i = j + k
1 1
Вычитание
i = j - k
1 1
Умножение
i = j * k
1 1
Деление
i = j \ k
5 1,5
Операции над переменными
с плавающей запятой
Присваивание
x = y
1 1
Сложение
x = y + z
1 1
Вычитание
x = y - z
1 1
Умножение
x = y * z
1 1
Деление
x = y / z
4 1
Трансцендентные функции
Извлечение квадратного корня
x = sqrt( y )
15 4
из числа с плавающей запятой
Вычисление синуса числа
x = sin( y )
25 20
с плавающей запятой
Вычисление логарифма числа
x = log( y )
25 20
с плавающей запятой
Вычисление экспоненты числа
x = exp( y )
50 20
с плавающей запятой
Операции над массивами
Обращение к массиву целых чи-
i = a[ 5 ]
1 1
сел с использованием константы
Обращение к массиву целых чисел
i = a[ j ]
1 1
с использованием переменной
Обращение к двумерному
i = a[ 3, 5 ]
1 1
массиву целых чисел с исполь- зованием констант
Обращение к двумерному
i = a[ j, k ]
1 1
массиву целых чисел с исполь- зованием переменных
Обращение к массиву чисел
x = z[ 5 ]
1 1
с плавающей запятой с исполь- зованием константы
Обращение к массиву чисел
x = z[ j ]
1 1
с плавающей запятой с исполь- зованием целочисленной переменной
(
см. след. стр.)
588
ЧАСТЬ V Усовершенствование кода
Табл. 25-2. (окончание)
Относительное время выполнения
Операция
Пример
C++
Java
Обращение к двумерному
x = z[ 3, 5 ]
1 1
массиву чисел с плавающей запятой с использованием констант
Обращение к двумерному
x = z[ j, k ]
1 1
массиву чисел с плавающей запятой с использованием целочисленных переменных
Примечание: показатели, приведенные здесь, сильно зависят от локальной среды,
компилятора и выполняемых компилятором видов оптимизации. Результаты, указанные для языков C++ и Java, нельзя сравнивать непосредственно.
С момента выхода первого издания этой книги относительное быстродействие отмеченных операций значительно изменилось, так что, если вы все еще подхо- дите к оптимизации кода, опираясь на идеи 10-летней давности, пересмотрите свои взгляды.
Большинство частых операций — в том числе вызовы методов, присваивание, ариф- метические операции над целыми числами и числами с плавающей запятой — имеет примерно одинаковую цену. Трансцендентные математические функции очень дороги. Вызовы полиморфных методов чуть дороже вызовов других методов.
Табл. 25-2 или похожая таблица, которую вы можете создать сами, — ключ, от- крывающий все двери в мир быстрого кода, описанные в главе 26. В каждом слу- чае повышение быстродействия исходит из замены дорогой операции на более дешевую (см. главу 26).
25.4. Оценка производительности
На небольшие фрагменты программы обычно приходится непропорционально большая доля времени ее выполнения, поэтому перед оптимизацией кода вам следует оценить его и найти в нем горячие точки. Обнаружив горячие точки и оптимизировав их, снова оцените код, чтобы узнать, насколько вы его улучшили.
Многие аспекты производительности противоречат интуиции. Выше я уже при- вел один пример этого, когда 10 строк кода оказались в итоге значительно быст- рее и компактнее, чем одна строка.
Опыт также не особо полезен при оптимизации. Опыт может быть ос- нован на использовании старого компьютера, языка или компилятора,
но когда что-либо из этого изменяется, все начинается сначала. Невоз- можно точно сказать, каковы результаты оптимизации, не оценив их.
Много лет назад я написал программу, суммирующую элементы матрицы. Перво- начальный код выглядел примерно так:
ГЛАВА 25 Стратегии оптимизации кода
589
Пример простого кода, суммирующего элементы матрицы (C++)
sum = 0;
for ( row = 0; row < rowCount; row++ ) {
for ( column = 0; column < columnCount; column++ ) {
sum = sum + matrix[ row ][ column ];
}
}
Как видите, код был прост, но суммирование элементов матрицы должно было выполняться как можно быстрее, а я знал, что все обращения к массиву и проверки условий цикла довольно дороги. Я знал, что при каждом обращении к двумерному масси- ву выполняются дорогие операции умножения и сложения. Так, обработка мат- рицы размером 100 на 100 требовала 10 000 умножений и сложений, что допол- нялось еще и затратами, связанными с управлением циклами. Использовав указа- тели, рассудил я, я смогу просто увеличивать указатель, заменив 10 000 дорогих умножений на 10 000 относительно дешевых операций инкремента. Я тщательно преобразовал код и получил:
Пример попытки оптимизации кода, суммирующего элементы матрицы (C++)
sum = 0;
elementPointer = matrix;
lastElementPointer = matrix[ rowCount - 1 ][ columnCount - 1 ] + 1;
while ( elementPointer < lastElementPointer ) {
sum = sum + *elementPointer++;
}
Хотя код стал менее удобочитаемым, особенно для программистов, не являющихся экспертами в C++, я был очень доволен собой. Оно и понятно: все-таки я изба- вился от 10 000 умножений и многих операций, связанных с управлением цикла- ми! Я был так доволен, что решил подкрепить свои чувства конкретными цифра- ми и оценить повышение скорости, хотя в то время я выполнял это не всегда.
Знаете, что я обнаружил? Никакого улучшения. Ни для мат- риц размером 100 на 100. Ни для матриц размером 10 на
10. Ни для каких-либо других матриц. Я был так разочаро- ван, что погрузился в ассемблерный код, сгенерированный компилятором, чтобы понять, почему моя оптимизация не сработала. К моему удивлению, оказалось, что я был не пер- вым, кому понадобилось перебирать элементы массива: ком- пилятор сам преобразовывал обращения к массиву в опе- рации над указателями. Я понял, что единственным резуль- татом оптимизации, в котором можно быть полностью уверенным без измерения производительности, является затруднение чтения кода. Если оценка эффектив- ности не оправдывает себя, не стоит приносить понятность кода в жертву сомни- тельному повышению производительности.
Дополнительные сведения Джон
Бентли описывает похожий слу- чай, когда переписывание кода с использованием указателей снизило производительность примерно на 10%. В другой си- туации этот же подход повысил производительность более чем на 50%. См. «Software Explora- torium: Writing Efficient C Prog- rams» (Bentley, 1991).
Ни один программист никогда
не мог предсказать или обнару- жить узкие места, не обладая
данными. Что бы вы ни дума- ли, реальность окажется совер- шенно другой.
Джозеф М. Ньюкамер
(Joseph M. Newcomer)