Файл: Рабочая программа по математике(алгебра) (базовый уровень) для 7б класса.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 01.12.2023

Просмотров: 52

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Муниципальное общеобразовательное учреждение

Константиновская средняя общеобразовательная школа

Раменского городского округа Московской области

«Утверждаю»

Директор МОУ Константиновской СОШ

____________________/Г.А.Симонова/

Введена в действие приказом № 60-ОД

от «27» июня 2022г

РАБОЧАЯ ПРОГРАММА

по МАТЕМАТИКЕ(алгебра)

(базовый уровень)

для 7б класса

Дубровиной Лилии Михайловны,

учителя математики

высшей квалификационной категории


Принята на заседании

Педагогического совета

Протокол № 8

от «27» июня 2022г.

2022-2023 учебный год

Рабочая программа составлена на основе Федерального государственного образовательного стандарта основного общего образования (ФГОС ООО) и примерной программы основного общего образования по математике. 5-11классы («Дрофа», «Вентана-граф» и «Астрель» 2017).

Данная рабочая программа ориентирована на использование учебника Алгебра: 7 класс: учебник для учащихся общеобразовательных организаций (М: Вентана-Граф, 2017). Автор А.Г. Мерзляк, В.Б.Полонский, М.СЯкир.

На преподавание математики (алгебры) в 7 классе отведено 3 часа в неделю, всего

102 часа в год в соответствии с Образовательной программой школы.
Планируемые результаты освоения курса алгебры

Изучение алгебры по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта основного общего образования.
Личностные результаты:

  • воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;

  • ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  • осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки

  • в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а так­же на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

  • умение контролировать процесс и результат учебной и математической деятельности;

  • критичность мышления, инициатива, находчивость, активность при решении математических задач.


Метапредметные результаты:

  • умение самостоятельно определять цели своего обуче­ния, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познава­тельной деятельности;

  • умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требова­ний, корректировать свои действия в соответствии с изменяющейся ситуацией;

  • умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

  • умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

  • развитие компетентности в области использования информационно-коммуникационных технологий;

  • первоначальные представления об идеях и о методах математики как об универсальном языке науки и тех­ники, о средстве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информа­цию, необходимую для решения математических про­блем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;

  • умение понимать и использовать математические сред­ства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умение выдвигать гипотезы при решении задачи, пони­мать необходимость их проверки;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

  • осознание значения математики для повседневной жиз­ни человека;

  • представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;

  • развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и сим­волики, проводить классификации, логические обос­нования;

  • владение базовым понятийным аппаратом по основным разделам содержания;

  • систематические знания о функциях и их свойствах;

  • практически значимые математические умения и навы­ки, их применение к решению математических и нематематических задач, предполагающее умения:


  • выполнять вычисления с действительными числами;

  • решать уравнения, неравенства, системы уравнений и неравенств;

  • решать текстовые задачи арифметическим способом, с помощью составления и решения уравнений, сис­тем уравнений и неравенств;

  • использовать алгебраический язык для описания предметов окружающего мира и создания соответствующих математических моделей;

  • проводить практические расчёты: вычисления с процентами, вычисления с числовыми последовательностями, вычисления статистических характеристик, выполнение приближённых вычислений;

  • выполнять тождественные преобразования рациональных выражений;

  • выполнять операции над множествами;

  • исследовать функции и строить их графики;

  • читать и использовать информацию, представлен­ную в виде таблицы, диаграммы (столбчатой или круговой);

решать простейшие комбинаторные задачи.
Предметные результаты изучения учебного предмета «Алгебра»:

 Алгебраические выражения

Обучающийся научится:

  • оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные, работать с формулами;

  • выполнять преобразование выражений, содержащих степени с натуральными показателями;

  • выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами;

  • выполнять разложение многочленов на множители.

Обучающийся получит возможность:

  • выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

  • применять тождественные преобразования для решения задач из различных разделов курса.

 Уравнения

Обучающийся научится:

  • решать линейные уравнения с одной переменной, системы двух уравнений с двумя переменными;

  • понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

  • применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.


Обучающийся получит возможность:

  • овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

  • применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Функции

Обучающийся научится:

• понимать и использовать функциональные понятия, язык (термины, символические обозначения);

  • строить графики линейной функций, исследовать свойства числовых функций на основе изучения поведения их графиков;

  • понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами;

Обучающийся получит возможность:

  • проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; н основе графиков изученных функций строить боле сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

  • использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Элементы прикладной математики

Обучающийсянаучится:

  • использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин;

  • использовать простейшие способы представления и ана­лиза статистических данных;

  • находить относительную частоту и вероятность случай­ного события;

  • решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Обучающийсяполучит возможность:

  • понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информацион­ных источниках, можно судить о погрешности прибли­жения;

  • понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных;

  • приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опро­са в виде таблицы, диаграммы;

  • приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов;

  • научиться некоторым специальным приёмам решения комбинаторных задач.




Оценка результатов освоения образовательной программы по алгебре производится на основании Положения о системе контроля и оценивания результатов освоения обучающимися МОУ Константиновской средней общеобразовательной школы образовательных учебных программ (утверждено на педсовете протокол 7 от 10.02.2012)

Содержание учебного предмета

1. Линейное уравнение с одной переменной

Числовые выражения с переменными. Простейшие преобразо­вания выражений. Уравнение, корень уравнения. Линейное урав­нение с одной переменной. Решение текстовых задач методом со­ставления уравнений. Статистические характеристики.

Основная цель — систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений дает возможность повторить с учащимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навы­ков вычислений должно уделяться серьезное внимание и в даль­нейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выра­жений расширяются сведения о неравенствах: вводятся знаки неравенств, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводят­ся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание кото­рых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчер­кивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащи­мися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется реше­нию уравнений вида