ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 02.12.2023
Просмотров: 37
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Оглавление
Вопрос 1. Биотехнология и медицина ………………………………………….3
Вопрос 2. Принципы действия и конструкции биореакторов…………………8
Вопрос 3. Технологии выращивания шампиньонов …………………………12
Вопрос 4. Методы иммобилизации ферментов, клеток, клеточных органелл (адсорбция, включение в полимерную структуру, инкапсулирование, поперечные сшивки)…………………………………………………………….16
Вопрос 5. Выделение, подбор и селекция объектов для биотехнологического процесса…………………………………………………………………………..21
Список использованной литературы …………………………………………..24
Вопрос 1. Биотехнология и медицина
Прежде чем рассмотреть связь биотехнологии и медицины, необходимо выявить определения «биотехнгология» и «медицина».
Биотехнология (от греч. bios — жизнь, techne — искусство, мастерство и logos — слово, учение) — научная дисциплина, изучающая использование живых организмов и продуктов их жизнедеятельности, а также биологических процессов в промышленном производстве [3].
Биотехнология — междисциплинарная область, возникшая на стыке биологических, химических и технических наук и связана с молекулярной биологией, генетикой, генной инженерией, биохимической, микробиологической, физико-химической, электрохимической, химической технологией, биохимией, микробиологией, физической химией, электрохимией.
Термин «биотехнология» впервые был применен венгерским инженером Карлом Эреки в 1917 году.
С развитием биотехнологии связывают решение глобальных проблем человечества — ликвидацию нехватки продовольствия, энергии, минеральных ресурсов, улучшение состояния здравоохранения и качества окружающей среды. Чтобы обеспечить себя доброкачественной пищей и сырьем и при этом не привести планету к экологической катастрофе, человечеству необходимо научиться эффективно изменять наследственную природу живых организмов. В связи с этим, одной из главных задачей селекционеров в настоящее время становится решение проблемы создания новых форм растений, животных и микроорганизмов, хорошо приспособленных к индустриальным способам производства, устойчиво переносящих неблагоприятные условия, эффективно использующих солнечную энергию и, что особенно важно, позволяющих получать биологически чистую продукцию без чрезмерного загрязнения окружающей среды. Принципиально новыми подходами к решению этой фундаментальной проблемы является использование в селекции генной и клеточной инженерии.
В настоящее время активно развивается микробиологический синтез ферментов, витаминов, аминокислот, антибиотиков и т. п. Перспективно промышленное получение других биологически активных веществ (гормональных препаратов, соединений, стимулирующих иммунитет, и т. п.) с помощью методов генетической инженерии и культуры животных и растительных клеток.
Медицина — область научной и практической деятельности по исследованию нормальных и патологических процессов в организме человека, различных заболеваний и патологических состояний, их лечению, сохранению и укреплению здоровья людей [3].
Достижения в области физико-химической биологии и биотехнологии заложили основы новой медицины. Современная биотехнология революционизирует медицинскую науку. Стремительно развиваются новые методы диагностики труднодиагностируемых заболеваний и устойчивых к воздействию антибиотиков микроорганизмов.
Ведутся биотехнологические разработки новых методов лечения на основе генной и клеточной терапии.
Фармакология уже получила множество ранее недоступных возможностей благодаря открытию новых генов и их белковых продуктов, что ведет к возникновению нового поколения лекарств с высокой избирательностью действия и малой токсичностью.
Важнейшим направлением медицинской генетики в настоящее время является разработка новых методов диагностики наследственных заболеваний, в том числе и болезней с наследственной предрасположенностью. Сегодня уже никого не удивляет предимплантационная диагностика - метод диагностики эмбриона на ранней стадии внутриутробного развития, когда врач-генетик, извлекая лишь одну клетку будущего ребенка с минимальной угрозой для его жизни, ставит точный диагноз или предупреждает о наследственной предрасположенности к той или иной болезни.
Получение антибиотиков в промышленных условиях
Антибиотики - это специфические продукты жизнедеятельности, обладающие высокой физиологической активностью по отношению к определенным группам микроорганизмов и к злокачественным опухолям, избирательно задерживающих их рост или полностью подавляющих развитие [4].
Далеко не все из этих соединений, число которых приближается к 5000, допущены для применения в медицине.
Причины неослабевающего внимания к поиску новых антибиотиков связаны с токсичностью существующих антибиотиков, аллергическими реакциями, вызываемыми ими, нарастанием устойчивости патогенных микроорганизмов к применяемым препаратам и, помимо этого, с необходимостью изыскания средств борьбы с возбудителями, против которых недостаточно эффективны известные ныне антибиотики.
Важной задачей является повышение эффективности биосинтеза известных антибиотиков. Значительных результатов удалось добиться за десятилетия селекции штаммов-продуцентов с применением индуцированного мутагенеза и ступенчатого отбора. Например, продуктивность штаммов Penicillium по синтезу пенициллина увеличена в 300- 350 раз. Определенные перспективы открываются в связи с возможностью клонирования генов “узких мест” биосинтеза антибиотика или в случае, если все биосинтетические ферменты кодируются единым опероном.
Вместо антибиотика в организм человека может вводиться его продуцент, антагонист возбудителя заболевания. Этот подход берет начало с работ И. И.Мечникова о подавлении гнилостной микрофлоры в толстом кишечнике человека посредством молочнокислых бактерий[7].
Биотехнология предоставляет медицине новые пути получения ценных гормональных препаратов. Особенно большие сдвиги произошли в последние годы в направлении синтеза пептидных гормонов.
Раньше гормоны получали из органов и тканей животных и человека (крови доноров, удаленных при операциях органов, трупного материала). Требовалось много материала для получения небольшого количества продукта.
Открываются перспективы борьбы не только с карликовостью, но и с низкорослостью - более слабой степенью дефицита соматотропина. Соматотропин способствует заживлению ран и ожогов, наряду с каль-цитонином (гормоном щитовидной железы) регулирует обмен Са 2+ в костной ткани[1].
Инсулин, пептидный гормон островков Лангерганса поджелудочной железы, представляет основное средство лечения при сахарном диабете. Эта болезнь вызвана дефицитом инсулина и проявляется повышением уровня глюкозы в крови[1].
До недавнего времени инсулин получали из поджелудочной железы быка и свиньи. Препарат отличался от человеческого инсулина 1-3 аминокислотными заменами, так что возникала угроза аллергических реакций, особенно у детей. Широкомасштабное терапевтическое применение инсулина сдерживалось его высокой стоимостью и ограниченностью ресурсов. Путем химической модификации инсулин из животных удалось сделать неотличимым от человеческого, но это означало дополнительное удорожание продукта.
К лечению диабета приложена также технология инкапсулирования: клетки поджелудочной железы в капсуле, введенные однократно в организм больного, продуцируют инсулин в течение года.
Примером успешного применения методов генетической инженерии может служить синтез рэндорфина по технологии гибридных белков.
Значителен вклад биотехнологии и в промышленное производство непептидных гормонов, в первую очередь стероидов.
Имеются разработки по получению гормона щитовидной железы тироксина из микроводорослей.
Рекомбинантные вакцины и вакцины-антигены
Вакцинация - один из основных способов борьбы с инфекционными заболеваниями[1].
Путем поголовной вакцинации ликвидирована натуральная оспа, резко ограничено распространение бешенства, полиомиелита, желтой лихорадки.
На повестке дня - изготовление вакцин против гриппа, гепатитов, герпесов, свинки, кори, острых респираторных заболеваний.
Большое экономическое значение имеет разработка вакцин против болезней сельскохозяйственных животных - ящура, африканской болезни лошадей, овечьей болезни “синего языка”, трипаносомозов и др. Традиционные вакцинные препараты изготовляют на основе ослабленных, инактивированных или дезинтегрированных возбудителей болезней.
Современные биотехнологические разработки предусматривают создание рекомбинантных вакцин и вакцин-антигенов. Вакцины обоих типов основаны на генноинженерном подходе.
Открывается возможность одномоментной комплексной иммунизации, скажем, крупного рогатого скота против всех опасных инфекций данной местности.
Многообразно применение ферментных препаратов в медицине. Их используют для растворения тромбов, лечения наследственных заболеваний (вместо отсутствующих эндогенных ферментов), удаления нежизнеспособных, денатурированных структур, клеточных и тканевых фрагментов, освобождения организма от токсических веществ [7].
Известно около 200 наследственных заболеваний, обусловленных дефицитом какого-либо фермента или иного белкового фактора. В настоящее время делают попытки лечения этих заболеваний с применением ферментов.
Вопрос 2. Принципы действия и конструкции биореакторов
В данном вопросе мы рассмотрим понятие «биореактор», его классификации, принципы его действия, необходимые системы для биореактора.
Биореактор – это система, имеющая ограничивающую поверхность, в которой протекают биохимические реакции [6].
Промышленный биореактор – это емкость, в которой осуществляются рост микроорганизмов и/или различные химические превращения.
Однако существуют принципы, общие по форме, но различающиеся по практической реализации:
1) принцип масштабирования – поэтапное увеличение объема аппаратов;
2) принцип однородности физико-химических условий – температуры, рН, концентрации растворенных веществ (кислород и др. газы) во всем объеме аппарата.
Для биотехнологических процессов характерны следующие этапы:
1) загрузка субстратов для реакций синтеза;
2) превращения субстратов;
3) отделение и очистка целевого продукта.
Биотехнологические процессы имеют свою специфику – в них участвуют живые клетки, субклеточные структуры или выделенные из клеток ферменты и их комплексы. Это оказывает влияние на процессы массопередачи – обмена веществом между различными фазами (например, перенос кислорода из газовой фазы в жидкую) и теплообмена – перераспределения тепловой энергии между взаимодействующими фазами. Именно поэтому важной составной частью биореактора является система перемешивания, служащая для обеспечения однородности условий в аппарате[5].
Многие биотехнологические процессы являются аэробными. Для аэрации культуральной среды используют воздух или воздух, обогащенный кислородом, реже чистый кислород. В ходе метаболизма выделяются газообразные продукты (например, СО2), которые подлежат удалению. Анаэробные процессы зависят от газообразных субстратов или требуют отвода газообразных продуктов жизнедеятельности. Для этого существуют системы газоснабжения и газоотвода, примером которых служат аэраторы. Очень часто потребность в кислороде меняется по мере развития культуры. Аэратор должен вовремя реагировать на эти изменения, увеличивая или уменьшая подачу кислорода[5].
Теплообмен является важной составной частью процессов, протекающих в биореакторе, т.к. жизнедеятельность и метаболическая активность биообъекта в существенной мере зависят от температуры. Узкий диапазон температур, оптимальный для биотехнологического процесса, определяется:
- резким спадом активности ферментов по мере снижения температуры;
- необратимой денатурацией биологических макромолекул (белков и нуклеиновых кислот) при повышении температуры до определенного уровня.
Большинство процессов протекает при температурах 30-50°С (мезофильные условия). В этом случае для поддержания оптимума температуры специальный подогрев используют в редких случаях. Однако для удаления избыточной теплоты, выделяемой в процессе жизнедеятельности культивируемых клеток, в биореакторе должна быть