Файл: Биотехнология и медицина.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 02.12.2023

Просмотров: 38

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
система теплообмена. Эта система должна чутко реагировать на изменения теплопродукции, происходящие в ходе культивирования биообъекта, поддерживать температуру на постоянном уровне или контролировать ее изменения по заданной программе[6].

Серьезной проблемой для аэрируемых биотехнологических процессов является вспенивание культуральной среды – образование на ее поверхности слоя из пузырей. Пенообразование связано с наличием в среде поверхностно-активных веществ (продукты распада жиров – мыла, белки). Пенный слой поверх среды культивирования в биореакторе имеет двоякое значение. Пена способствует росту многих аэробных микроорганизмов. В пенном слое – «кислородном коктейле» - наибольший прирост дают дрожжи. Внедряясь в границу раздела вода/воздух, пенообразующие ПАВ стимулируют массопередачу между этими фазами, снижая затраты на перемешивание и аэрацию. Однако нежелательные последствия вызывает избыточное пенообразование. Оно ведет к сокращению полезного объема биореактора, создает угрозу заражения культуры посторонней микрофлорой. Поэтому система пеногашения – необходимая составная часть реактора.

Система стерилизациипредставляет собой специфический элемент биореактора. Устранение посторонней микрофлоры из реактора до введения в него штамма-продуцента, поддержание чистоты культуры на всем протяжении биотехнологического процесса, надежная стерилизация питательных сред, добавочных компонентов, титрантов, пеногасителей, подаваемого в биореактор воздуха – принцип асептики биотехнологического производства[5].

В последнее время в биотехнологии стали применять принцип дифференцированных режимов культивирования: разные этапы одного процесса осуществляют при различных условиях, варьируя такие параметры, как температура, рН среды и др.

Таким образом, в соответствии с основными принципами реализации биотехнологических процессов современный биореактор должен обладать следующими системами:

1) эффективного перемешивания и гомогенизации питательной среды;

2) обеспечения доступа и быстрой диффузии газообразных агентов (система аэрации среды);

3) теплообмена;

4) пеногашения;

5) стерилизации сред, аппаратуры и воздуха;

6) контроля и регулировки процесса.

Как сложные многопараметровые аппараты, биореакторы могут быть классифицированы по ряду критериев:

1) по размеру и целевому назначению:


- лабораторные;

- опытно-промышленные (пилотные);

- промышленные;

2) по режиму работы:

- периодические;

- периодический режим с доливом субстрата;

- полупериодические;

- непрервно-проточные.

3) по условиям культивирования:

- аэробные и анаэробные;

- мезофильные и термофильные;

- для поверхностного и глубинного культивирования;

- аппараты для жидких питательных сред, твердофазные и газофазные[6].

Вопрос 3. Технологии выращивания шампиньонов

Шампиньон двуспоровый - бесспорный лидер среди искусственно культивируемых грибов: общий объем выращиваемых шампиньонов составляет 75-80% от мирового производства грибов

В современном промышленном грибоводстве различают две системы выращивания шампиньона - однозональную и многозональную, которые имеют принципиальные различия как в способах выращивания и планировке шампиньонницы, так и в механизации производственных процессов[2].

Каждая из этих систем имеет свои преимущества и недостатки.

Однозональная система (стеллажи, гряды, реже контейнеры) имеет следующие преимущества:

-хорошую теплоизоляцию камер;

-возможность постоянного расширения комбината; возможность улучшения -качества компоста путем регулирования срока его отпотевания;

- обработку камер паром в конце оборота культуры, что является действенным средством борьбы со многими вредителями и болезнями, в том числе вирусами;

-необходимость меньших затрат труда, поскольку все процессы выполняются в одном месте;

-при централизованном приготовлении субстрата и покровной земли рентабельны и мелкие производства;

-выполнение операций по наполнению камер компостом и его выгрузки не лимитируется использованием других культивационных помещений[2].

Многозональная система (контейнеры из дерева и пленки) требует меньших капиталовложений, более экономична с точки зрения отопления, вентиляции и кондиционирования воздуха, так как высокая температура требуется лишь в камере пастеризации компоста и проращивания мицелия. Незначительный перепад температуры (25-15 С) облегчает изготовление аппаратуры для автоматического регулирования микроклимата в камерах плодоношения. Аппаратура в этих камерах может быть установлена на месте выращивания.

За последние 8-10 лет нашел широкое распространение способ термической обработки субстрата в массе, благодаря которому можно осуществлять контроль и управление основными параметрами всех фаз процесса производства субстрата. Достигнуто это благодаря применению простой конструкции камеры, в которой на ложном днище насыпью создается рыхлый слой массы субстрата. При продувании кондиционированного воздуха через массу в ней резко возрастают теплообмен и газообмен. Таким образом, создаются благоприятные условия для роста микроорганизмов, под влиянием которых аммиак и другие питательные вещества субстрата переходят в легко усвояемую шампиньонами форму[2].



Очень важно, чтобы площадь камеры была полностью заполнена и воздух проходил через субстрат. Особое внимание следует обратить на герметичность двери камеры.

Так как быстрее всего высыхает тот слой субстрата, через который продувают воздух, целесообразно подавать воздух сверху. Это дает возможность разбрызгивать воду поверх субстрата, предотвращая его просушивание. В новых проектах камер предусматривается переключение заслонок в вентиляционных каналах, что позволит подавать воздух в субстрат попеременно то сверху, то снизу.

Поскольку удельная часть притока свежего воздуха незначительна (20-30%), температура воздуха в камере примерно на 0,5 С ниже температуры субстрата. После загрузки в камеру субстрату под действием термофилов дают разогреться до 60 °С, в результате чего воздух приобретает такую же температуру. При этом воздух подается через короткие промежутки времени. В течение 4-6 часов эта температура удерживается путем подачи отдельных порций воздуха, после чего подается количество свежего воздуха, необходимого для поддержания температуры субстрата (50-55 °С). Такая температура является идеальной для микроорганизмов. Если же аммиак не обнаруживается, посредством подачи свежего воздуха начинают снижать температуру субстрата до 25 °С - температуры инокуляции мицелия.

Переход на многозональную систему выращивания шампиньонов и пастеризации субстрата в массе позволяет увеличить производство шампиньонов до 300 т в год.

Как отмечалось выше, шампиньоны выращивают в любых помещениях, где можно выдерживать температуру от 12 до 30 °С с применением естественной или принудительной вентиляции. В настоящее время накоплен богатый опыт по выращиванию шампиньонов в приспособленных сооружениях, овощехранилищах, старых складских помещениях, осенью в зимних теплицах и обогреваемых пленочных теплицах. Болгарские грибоводы удачно используют для этой цели овчарни во время пастбищного периода животных.

Можно выращивать шампиньоны в крупных современных овощехранилищах, которые летом освобождаются от овощей и картофеля. Технология выращивания проста и доступна буквально для всех хозяйств. Из металла изготовляют столы, на которые помещают ящики с компостом, инокулированным мицелием и покрытым покровной смесью. Такие столы ставят друг на друга, и таким образом получается многоэтажный «грибной завод», который действует целое лето.


Хороших результатов можно достичь при выращивании грибов в подвалах и старых постройках.

Наряду с традиционными способами выращивания шампиньонов (гряды, стеллажи, контейнеры) сейчас находит широкое применение способ выращивания грибов в полиэтиленовых мешках. Этот метод имеет те же преимущества, что и ящичный. Он дает возможность механизировать многие виды работ, проводить направленную контролируемую ферментацию, упростить дезинфекцию помещений. При этом себестоимость продукции значительно снижается, так как полиэтиленовые мешки дешевле, чем деревянные ящики.

Во Франции разработана технология выращивания шампиньонов в больших металлических контейнерах. Компост пастеризуется на специализированных предприятиях или прямо на месте выращивания грибов.

В ряде хозяйств США и Канады шампиньоны возделывают в поддонах, установленных в специальных камерах с регулируемым микроклиматом. Оптимальными условиями выращивания считают температуру 15,6.°С, относительная влажность воздуха 90% при шести воздухообменах в I час.


Вопрос 4. Методы иммобилизации ферментов, клеток, клеточных органелл (адсорбция, включение в полимерную структуру, инкапсулирование, поперечные сшивки)

Много тысяч лет человек умеет выпекать хлеб, делать вино, дубить кожу и т. д. Он научился этим необходимым операциям, не вникая в суть происходящих биологических процессов. Однако понимание клеточного метаболизма и каталитических свойств ферментов позволяют человеку более полно использовать возможности клеток и ферментов для бытовых промышленных, медицинских и др. целей. Почему иммобилизация? Во многих случаях разработка практических методов, включающих в качестве компонента биологический элемент, зависит от способности стабилизировать или сохранить этот биологический элемент, будь то большая молекула или частица.

В последние годы набор способов сохранения активности биологических объектов значительно расширился, в разработке этих способов иммобилизация играет все большую роль.

Иммобилизация – это процесс фиксации биообъекта с помощью физико-химических сил на носителе[3].

Иммобилизацию можно рассматривать как физическое разделение биокатализатора (клеток, клеточных фракций или ферментов) и растворителя, при котором молекулы субстрата и продукта могут легко обмениваться между фазами.


В современной биохимии одно из видных мест принадлежит ферментам. Ферменты и ферментные системы широко используются в различных отраслях промышленности, медицине, сельском хозяйстве, химическом анализе и т.д.

Ферменты - вещества белковой природы и поэтому неустойчивыпри хранении, а также чувствительны к тепловым воздействиям. Кроме того, ферменты не могут быть использованы многократно из-за трудностей в отделении их от реагентов и продуктов реакции. Решить эти проблемы помогает создание иммобилизованных ферментов. Начало этому методу было положено в 1916 году, когда Дж.Нельсон и Е.Гриффин адсорбировали на угле инвертазу и показали, что она сохраняет в таком виде каталитическую активность. Сам термин "иммобилизованные ферменты узаконен в 1971 году, и означает любое ограничение свободы передвижения белковых молекул в пространстве[8].

При иммобилизации фермент закрепляют на поверхности или внутри твердой подложки, которую легко удаляют из реакционной смеси после завершения ферментации. Фермент может быть использован повторно, что существенно снижает стоимость процесса.

Другое преимущество иммобилизации заключается в том, что фермент становится более стабильным, вероятно, за счет ограничения его способности денатурировать при изменениях рН, температуры и растворителей. К примеру, иммобилизованная глюкозоизомераза стабильна при 65 °С в течение года, тогда как в растворе она денатурирует при 45 °С за несколько часов.

Иммобилизованный фермент можно использовать для непрерывного (открытого) производства, пропуская реагенты через фермент и собирая продукт на конечном этапе [8].

Сущность иммобилизации ферментов — прикрепление их в активной форме к нерастворимой основе или заключение в полупроницаемую мембранную систему. Прикрепление фермента к носителю осуществляется адсорбционно, химической связью или путем механического включения фермента в органический или неорганический гель (в капсулу и тому подобное). При этом допускается прикрепление фермента только за счет функциональных групп, не входящих в активный центр фермента и не участвующих в образовании фермент-субстратного комплекса. Носитель фермента или матрица может иметь вид зернистого материала, волокнистой структуры, пластинчатой поверхности, пленок или тканей, полых волокон, трубочек, капсул и т. д. Имеет значение размер частиц носителя. Важно иметь большую поверхность, поэтому рекомендуются небольшие частицы диаметром 0,1—0,2 мм. Носитель фермента может быть как природное вещество, так и синтетический полимер.