Файл: Учебник для высших учебных заведений физической культуры Издание 2е, исправленное и дополненное.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.12.2023

Просмотров: 860

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
раздражаемых органов и тканей организма. В этом отношении прогрессивным методом исследования целостного организма явился разработанный И. П. Павловым метод условных рефлексов.
В современных условиях наиболее распространенными являются электрофизиологические методы, позволяющие регистрировать электрические процессы, не изменяя текущей деятельности изучаемых органов и без повреждения покровных тканей — например, электрокардиография, электромиография, электроэнцефалография
(регистрация электрической активности сердца, мышц и мозга). Развитие радиотелеметрии позволяет передавать эти получаемые записи на значительные расстояния, а компьютерные технологии и специальные программы — обеспечивают тонкий анализ физиологических данных.
Использование фотосъемки в инфракрасных лучах (тепловидения) позволяет выявить наиболее горячие или холодные участки тела, наблюдаемые в состоянии покоя или в результате деятельности. С помощью так называемой компьютерной томографии, не
8 вскрывая мозга, можно увидеть морфофункциональные его изменения на различной глубине. Новые данные о работе мозга и отдельных частей тела дает изучение магнитных колебаний.
1.3. КРАТКАЯ ИСТОРИЯ ФИЗИОЛОГИИ
Наблюдения за жизнедеятельностью организма производились с незапамятных времен. За 14-15 веков до н.э. в Древнем Египте при изготовлении мумий люди хорошо знакомились с внутренними органами человека. В гробнице врача фараона Унаса изображены древние медицинские инструменты. В Древнем Китае только по пульсу удивительно тонко различали до 400 болезней. В IV-У веке до н. э. там было развито учение о функционально важных точках тела, которое в настоящее время явилось основой для современных разработок рефлексотерапии и иглоукаливания, Су-Джок терапии, тестирования функционального состояния скелетных мышц спортсмена по величине напряженности электрического поля кожи в биоэлектрически активных точках над ними.
Древняя Индия прославилась своими особыми растительными рецептами, воздействием на организм упражнениями йоги и дыхательной гимнастики. В
Древней Греции первые представления о функциях мозга и сердца высказывали в IV-V веке до н. э. Гиппократ (460-377 г. до н. э.) и Аристотель
(384-322 до н. э.), а в Древнем Риме во 11 веке до н.э.— врач Гален (201-131 г. до н. э.).
Однако, как экспериментальная наука, физиология возникла в XVII веке нашей эры, когда английский врач В. Гарвей открыл круги кровообращения.
В этот же период французский ученый Р. Декарт ввел понятие рефлекс
(отражение), описав путь внешней информации в мозг и обратный путь двигательного ответа. Работами гениального русского ученого М. В.


Ломоносова и немецкого физика Г. Гельмгольца о трехкомпонентной природе цветного зрения, трактатом чеха Г. Прохазки о функциях нервной системы и наблюдениями итальянца Л. Гальвани о животном электричестве в нервах и мышцах отмечен ХУШ век. В ХІХ веке разработаны представления английского физиолога Ч. Шеррингтона об интегративных процессах в не- рвной системе, изложенные в его известной монографии в 1906 г. Проведены первые исследования утомления итальянцем А. Моссо. Обнаружил изменения постоянных потенциалов кожи при раздражениях у человека И. Р.
Тарханов (феномен Тарханова).
В XIX в. работами «отца русской физиологии» И. М. Сеченова (1829-1905) заложены основы развития многих областей физиологии — изучение газов крови, процессов утомления и «активного отдыха», а главное — открытие в
1862 году торможения в центральной нервной системе («Сеченовского торможения») и разработка физиологических
9 основ психических процессов человека, показавших рефлекторную природу поведенческих реакций человека (' Рефлексы головного мозга», 1863 г.).
Дальнейшая разработка идей И. М.Сеченова шла двумя путями. С одной стороны, изучение тонких механизмов возбуждения и торможения проводилось в Санкт-Петербургском Университете Н. Е. Введенским (1852-
1922). Им создано представление о физиологической лабильности как скоростной характеристике возбуждения и учение о парабиозе как общей реакции нервно-мышечной ткани на раздражение. В дальнейшем это направление было продолжено его учеником А. А. Ухтомским (1875-1942), который, изучая процессы координации в нервной системе, открыл явление доминанты (господствующего очага возбуждения) и роль в этих процессах усвоения ритма раздражений. С другой стороны, в условиях хронического эксперимента на целостном организме, И. П. Павлов (1849-1936) впервые создал учение об условных рефлексах и разработал новую главу физиологии
— физиологию высшей нервной деятельности. Кроме того, в 1904 г. за свои работы в области пищеварения И. П. Павлов, одним из первых русских ученых, был отмечен Нобелевской премией. Физиологические основы поведения человека, роль сочетанных рефлексов были разработаны В. М.
Бехтеревым.
Крупный вклад в развитие физиологии внесли и другие выдающиеся отечественные физиологи: основатель эволюционной физиологии и адаптологии академик Л. А. Орбели, изучавший условно-рефлекторные влияния коры на внутренние органы акад. К. М. Быков, создатель учения о функциональной системе акад. П. К.Анохин, основатель отечественной электроэнцефалографии — акад. М. Н. Ливанов, разработчик космической физиологии — акад. В. В. Ларин, основатель физиологии активности — Н. А.
Бернштейн и многие др.
В области физиологии мышечной деятельности следует отметить основателя отечественной физиологии спорта — проф. А. Н. Крестовникова ( 1885-
1955), написавшего первый учебник по физиологии человека для

физкультурных вузов страны (1938) и первую монографию по физиологии спорта (1939), а также широко известных ученых — проф. Е. К. Жукова, В.
С. Фарфеля, Н. В. Зимкина, А. С. Мозжухина и многих др., а среди зарубежных ученых — П.-О. Астранда, А. Хилла, Р. Гранита, Р. Маргария и др.

2. ОБЩИЕ ЗАКОНОМЕРНОСТИ ФИЗИОЛОГИИ И ЕЕ ОСНОВНЫЕ
ПОНЯТИЯ
Живые организмы представляют собой так называемые открытые системы (т. е. не замкнутые в себе, а неразрывно связанные с внешней средой). Они состоят из белков и нуклеиновых кислот и
10 характеризуются способностью к авторегуляции и самовоспроизведению.
Основными свойствами живого организма являются обмен веществ, раздражимость (возбудимость), подвижность, самовоспроизведение
(размножение, наследственность) и саморегуляция (поддержание гомеостаза, приспособляемость-адаптивность).
2.1. ОСНОВНЫЕ ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ
ВОЗБУДИМЫХ ТКАНЕЙ
Общим свойством всех живых тканей является раздражимость, т.е. способность под влиянием внешних воздействий изменять обмен веществ и энергии. Среди всех живых тканей организма особо выделяют возбудимые ткани (нервную, мышечную и железистую), реакция которых на раздражение связана с возникновением специальных форм активности — электрических потенциалов и других явлений.
Основными функциональными характеристиками возбудимых тканей являются возбудимость и лабильность.
Возбудимость — свойство возбудимых тканей отвечать на раздражение специфическим процессом возбуждения. Этот процесс включает электрические, ионные, химические и тепловые изменения, а также специфические проявления: в нервных клетках — импульсы возбуждения, в мышечных — сокращение или напряжение, в железистых — выделение определенных веществ. Он представляет собой переход из состояния физиологического покоя в деятельное состояние. Для нервной и мышечной ткани характерна также способность передавать это активное состояние соседним участкам— т.е. проводимость.
Возбудимые ткани характеризуются двумя основными нервными процессами
— возбуждением и торможением. Торможение — это активная задержка процесса возбуждения. Взаимодействие этих двух процессов обеспечивает координацию нервной деятельности в целостном организме.
Различают местное (или локальное) возбуждение и распространяющееся.
Местное возбуждение представляет незначительные изменения в
поверхностной мембране клеток, а распространяющееся возбуждение связано с передачей всего комплекса физиологических изменений (импульса возбуждения) вдоль нервной или мышечной ткани. Для измерения возбудимости пользуются определением порога, т.е. минимальной величины раздражения, при которой возникает распространяющееся возбуждение.
Величина порога зависит от функционального состояния ткани и от особенностей раздражителя, которым может быть любое изменение
11 внешней среды (электрическое, тепловое, механическое и пр.). Чем выше порог, тем ниже возбудимость и наоборот. Возбудимость может повышаться в процессе выполнения физических упражнений оптимальной длительности и интенсивности (например, под влиянием разминки, входе врабатывания) и снижаться при утомлении, развитии перетренированности.
Лабильность — скорость протекания процесса возбуждения в нервной и мышечной ткани (лат. лабилис — подвижный). Понятие лабильности или функциональной подвижности было выдвинуто Н. Е. Введенским в 1892 г. В качестве одной из мер лабильности Н. Е. Введенский предложил максимальное количество волн возбуждения (электрических потенциалов действия), которое может воспроизводиться тканью в 1 с в соответствии с ритмом раздражения. Лабильность характеризует скоростные свойства ткани.
Она может повышаться под влиянием раздражений, тренировки, особенно у спортсменов при развитии качества быстроты.
2.2. НЕРВНАЯ И ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ ФУНКЦИЙ
У простейших одноклеточных животных одна единственная клетка осуществляет разнообразные функции. Усложнение же деятельности организма в процессе эволюции привело к разделению функций различных клеток — их специализации. Для управления такими сложными многоклеточными системами уже было недостаточно древнего способа—
переноса регулирующих жизнедеятельность веществ жидкими средами организма.
Регуляция различных функций у высокоорганизованных животных и человека осуществляется двумя путями: гуморальным (лат. гумор —
жидкость) — через кровь, лимфу и тканевую жидкость и нервны м.
Возможности гуморальной регуляции функций ограничены тем, что она действует сравнительно медленно и не может обеспечить срочных ответов организма (быстрых движений, мгновенной реакции на экстренные раздражители). Кроме того, гуморальным путем происходит широкое вовлечение различных органов и тканей в реакцию (по принципу «Всем, всем, всем!»). В отличие от этого, с помощью нервной системы возможно быстрое и точное управление различными отделами целостного организма, доставка сообщений точному адресату. Оба эти механизма тесно связаны, однако ведущую роль в регуляции функций играет нервная система.
В регуляции функционального состояния органов и тканей принимают

участие особые вещества — нейропептиды, выделяемые
12 железой внутренней секреции гипофизом и нервными клетками спинного и головного мозга. В настоящее время известно около сотни подобных веществ, которые являются осколками белков и, не вызывая сами возбуждения клеток, могут заметно изменять их функциональное состояние.
Они влияют на сон, процессы обучения и памяти, на мышечный тонус (в частности, на позную асимметрию), вызывают обездвижение или обширные судороги мышц, обладают обезболивающим и наркотическим эффектом.
Оказалось, что концентрация нейропептидов в плазме крови у спортсменов может превышать средний уровень у нетренированных лиц в 6-8 раз, повышая эффективность соревновательной деятельности. В условиях чрезмерных тренировочных занятий происходит истощение нейропептидов и срыв адаптации спортсмена к физическим нагрузкам.
2.3. РЕФЛЕКТОРНЫЙ МЕХАНИЗМ ДЕЯТЕЛЬНОСТИ НЕРВНОЙ
СИСТЕМЫ
В деятельности нервной системы основным является рефлекторный механизм. Рефлекс — это ответная реакция организма на внешнее раздражение, осуществляемая с участием нервной системы.
Нервный путь рефлекса называется рефлекторной дугой. В состав рефлекторной дуги входят: 1) воспринимающее образование — рецептор, 2) чувствительный или афферентный нейрон, связывающий рецепторе нервными центрами, 3) промежуточные (или вставочные) нейроны нервных центров, 4) эфферентный нейрон, связывающий нервные центры с периферией, 5) рабочий орган, отвечающий на раздражение — мышца или железа.
Наиболее простые рефлекторные дуги включают всего две нервные клетки, однако множество рефлекторных дуг в организме состоят из значительного количества разнообразных нейронов, расположенных в различных отделах центральной нервной системы. Выполняя ответные реакции, нервные центры посылают команды к рабочему органу (например, скелетной мышце) через эфферентные пути, которые выполняют роль так называемых к а н а л о в прямой связи. В свою очередь, в ходе осуществления рефлекторного ответа или после него рецепторы, находящиеся в рабочем органе, и другие рецепторы тела посылают в центральную нервную систему информацию о результате действия. Афферентные пути этих сообщений — каналы обратной связи. Полученная информация используется нервными центрами для управления дальнейшими действиями, т. е. прекращением рефлекторной реакции, ее продолжением или изменением. Следовательно, основу
13 целостной рефлекторной деятельности составляет не отдельная рефлекторная дуга, а замкнутое рефлекторное кольцо, образованное прямыми и обратными связями нервных центров с периферией.