ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.12.2023
Просмотров: 162
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
зложенная выше упрощенная модель теплового пробоя относится к случаю, когда время приложения напряжения значительно превышает постоянную времени нагрева изоляции н и, следовательно, могут достигаться установившиеся режимы нагрева конструкции. Однако тепловой пробой возможен и при , соизмеримых с н, и даже при <H. В этих случаях механизм теплового пробоя сложнее, но сущность его остается прежней — разогрев изоляции за счет диэлектрических потерь до температуры, при которой происходит разрушение изоляции. В этой области времен напряжение Uпр теплового пробоя возрастает при уменьшении , так как для разогрева изоляции до одной и той же температуры разрушения за более короткое время нужна большая мощность диэлектрических потерь.
Сущность теплового пробоя – разогрев изоляции за счёт диэлектрических потерь до температуры, при которой происходит разрушение изоляции.
2,5 раза.
Обкладки выравнивают поле в радиальном и аксиальном направлениях. Наиболее важно выровнять поле в аксиальном направлении для уменьшения длины ввода. Для этого уступы делают одинаковыми. На рис. 2.4 приведены эпюры распределения напряженностей электрического поля в радиальном (а) и аксиальном (б) направлениях маслобарьерного ввода.
Токоведущий стержень обматывается несколькими слоями бумаги. Основную электрическую прочность изоляции ввода обеспечивает масло, находящееся внутри покрышки.
2) Бумажно-масляный ввод конденсаторного типа на класс напряженияU ≥ 220 кВ. Ввод изготавливается путем намотки на токоведущий стержень (или трубу) изоляционного тела из бумаги. Через каждые 2…4 мм намотки бумаги в тело закладываются конденсаторные обкладки из алюминиевой фольги для выравнивания поля в осевом и радиальном направлениях. После намотки тело пропитывается маслом в вакууме, а после сборки ввод герметизируется.
Рис. 2.3. Конструктивная схема маслобарьерного ввода:
1 – токопровод (стержень); 2 – высоковольтный фланец; 3 – заземленный фланец; 4 – фарфоровая рубашка; 5 – барьеры с обкладками; 6 – масло
Рис. 2.4. Распределение напряженности электрического поля в радиальном (а) и аксиальном (б) направлениях ввода: rc – радиус токопровода (стержня); r1 – радиус первой обкладки (фольги); r2 – радиус второй обкладки (фольги)rф – радиус обкладки у фланца (заземлена); ∆hс – длина уступа изоляции у стержня; ∆h1 – длина уступа на первом барьере; ∆h2 – длина уступа на втором барьере; ∆hф – длина уступа на барьере у фланца.
Электрические кабели – это гибкие изолированные проводники, снабженные защитными оболочками, которые предохраняют изоляцию от внешних механических и иных воздействий. Основными элементами силовых кабелей являются проводники – жилы, изоляция по отношению к земле и между жилами, герметичная металлическая оболочка и защитные покровы.
Основное назначение кабелей – передача электрической энергии от подстанции к потребителям.
Силовые кабели высокого напряжения выполняются 4 типов:
1) кабели с бумажной изоляцией и вязкой пропиткой на напряжение до 35 кВ (рабочая напряженность ЕРАБ = 2…3 кВ/мм);
2) кабели с бумажной изоляцией с пропиткой маслом под давлением – маслонаполненные кабели: 2…3 атм – низкое давление (ЕРАБ = 3…5 кВ/мм); 4…5 атм – среднее давление (ЕРАБ = 6…8 кВ/мм); 8…15 атм – высокое давление (ЕРАБ = 10…15 кВ/мм);
3) кабели с монолитной полимерной изоляцией (полиэтилен, фторопласт и др.).
4) кабели из сшитого полиэтилена.
Кроме этого, нашли применение кабели в трубах под давлением масла или газа. Разрабатываются криогенные кабели с охлаждением до температуры жидкого азота (77 К) или жидкого гелия (5 К). Кабели выполняются на напряжение до 500 кВ. Разрабатываются кабели на напряжение 750…1150 кВ.
На рис. приведена схема устройства трехфазного кабеля с поясной изоляцией. Такие кабели выпускаются на рабочее напряжение до 10 кВ. На 35 кВ выпускаются кабели с отдельно освинцованными жил ами и броней из стальных лент типа АОСБ (А – алюминиевая жила, О– отдельно освинцованные жилы, СБ – броня стальными лентами).
Р ис. 2.7. Схема устройства изоляции кабелей до 35 кВ:1 – жила; 2 – фазная изоляция; 3 – поясная изоляция; 4 – герметичное покрытие; 5 – подушка; 6 – броня; 7 – антикоррозионное покрытие; 8 – наполнитель (джут)
На рис. ниже приведена схема устройства маслонаполненного кабеля на рабочее напряжение 110 кВ. Как правило, выполняются однофазными в свинцовой оболочке с броней из круглых или плоских проволок. Например, типа МССК-110,где М – маслонаполненный; С – среднего давления; С – свинцовый экран; К – броня круглой стальной проволокой.
Схема устройства изоляции кабелей до 35 кВ:
1 – жила; 2 – фазная изоляция; 3 – поясная изоляция; 4 – герметичное покрытие; 5 – подушка; 6 – броня; 7 – антикоррозионное покрытие; 8 – наполнитель (джут)
К вращающимся машинам высокого напряжения относятся турбо- и гидрогенераторы, синхронные компенсаторы и двигатели большой мощности с номинальным напряжением 3 кВ и выше. Они выполняют важные функции в энергосистемах и на промышленных предприятиях.
К их изоляции предъявляются очень высокие требования. Гидрогенераторы разрабатываются и изготавливаются на напряжение до 220 кВ. Устройство изоляции вращающейся машины высокого напряжения определяется конструкцией ее статорной обмотки. Изоляция статорных обмоток подразделяется на
главную (корпусную) и продольную. Главная – изоляция между проводниками обмотки и корпусом. Она имеет разную конструкцию на пазовых и лобовых частях катушек, а также на выводах (линейных и у нейтрали).
Междуфазная изоляция - изоляция между обмотками различных фаз.
К продольной относится изоляция между витками одной катушки, т.е. междувитковая (у стержневых обмоток отсутствует), а также изоляция между уложенными в одном пазу катушками.
Междувитковой изоляцией, а также изоляцией между элементарными проводниками обычно служит собственная изоляция обмоточных проводов.
Б ольшое значение имеет регулирование электрического поля в изоляции статорной обмотки. Основная задача регулирования электрических полей – устранение частичных разрядов в воздушных зазорах между поверхностью изоляции и стенками пазов и устранение скользящих разрядов по поверхности изоляции, в местах выхода обмоток из паза статора, где поле получается резконеоднородным. Для этого используются полупроводящие покрытия из железистой асбестовой ленты и различные лаки. На рис. приведено устройство высоковольтной изоляции в пазу электрической машины.
Схема устройства высоковольтной изоляции электрической машины: 1 – статор; 2 – проводник сплошной; 3 – проводник полый; 4 – витковая (продольная) изоляция; 5 – главная корпусная изоляция; 6 – полупроводящее покрытие; 7 – прокладки; 8 – клин.
Изоляционные материалы, которые используются в электрических машинах, изготавливают на основе слюды (миканит, микаленты, микафорий). Широко используются компаунды (термопластичные), в качестве связующих применяют термореактивные лаки и смолы.
Назначение конденсаторов:
1)улучшение cos ϕ;
2)ВЧ-связь;
3)компенсация сдвига по фазе между током и напряжением;
4)выпрямительные установки – фильтры и др.;
5)высоковольтные импульсные установки.
В качестве изоляции используются: газ, жидкости, твердые неорганические материалы, твердые органические материалы. Твердая изоляция в высоковольтных конденсаторах (чаще органическая) – бумага, пленки с пропиткой маслом. Конденсатор характеризуется удельной запасаемой энергией, например Дж/дм3:
Сущность теплового пробоя – разогрев изоляции за счёт диэлектрических потерь до температуры, при которой происходит разрушение изоляции.
Электрический пробой.
Основными процессами в данном случае являются ускорение свободных электронов и ударная ионизация. зависит от площади электродов и объёма изоляции .
С ростом площади электродов и объёма изоляции увеличивается вероятность появления в изоляции слабых участков. В масляном промежутке наличие влаги способствует слиянию капель для образования тончайших каналов, соответственно, площадь снижается. Для увеличения электрической прочности используют покрытие и изолирование электродов слоями кабельной бумаги и барьерами. Для бумажно-масляной изоляции уменьшение толщины бумаги приводит к сокращению масляных прослоек, соответственно, электрическая прочность возрастает. Для изоляции из тонкой бумаги с толщиной прочность зависит от числа листов в слое, используется в силовых конденсаторах. При числе слоев более 5 электрическая прочность снижается.
-
Изоляция силовых трансформаторов и высоковольтных вводов.
В силовых трансформаторах изоляция состоит из различных по конструкции элементов, работающих в разных условиях. Воздушные промежутки между вводами и по их поверхности – внешняя изоляция. Изоляционные участки, расположенные внутри бака трансформатора и внутри вводов, – внутренняя изоляция. Внутренняя изоляция подразделяется на главную и продольную. Главная изоляция – между разными обмотками, стенками бака, магнитопроводом и др. Продольная изоляция – между элементами одной и той же обмотки: между витками, слоями, катушками.
В высоковольтных силовых трансформаторах в качестве главной используется маслобарьерная изоляция. Продольная изоляция выполняется бумажно-масляной. Количество барьеров зависит от номинального напряжения трансформатора.
На рис. 2.6 приведено схематическое устройство главной изоляции высоковольтного трансформатора.
Высоковольтные обмотки выполняются катушечного типа или непрерывной цилиндрической многослойной намоткой.
Трансформаторы до 35 кВ выполняются с изолированной нейтралью. Трансформаторы свыше 110 кВ – с заземленной нейтралью.
С хема устройства изоляции высоковольтного трансформатора: 1 – магнитопровод; 2 – низковольтная обмотка (НВ); 3 – высоковольтная обмотка (ВВ); 4 – барьер; 5 – щитки электроизоляции; 6 – масло.
Вводы – это проходные изоляторы на 110 кВ и выше. Они содержат внешнюю и внутреннюю изоляцию сложной конструкции. Внешней изоляцией является фарфоровая покрышка. Внутренняя – участки изоляции в теле ввода. Вводы бывают двух типов: маслобарьерные и бумажномасляные (для UH ≥ 220 кВ).
1) Маслобарьерный ввод 110…150 кВ конденсаторного типа (см. рис. 2.3). Чтобы повысить Uпр, разбивают промежуток наn малых промежутков барьерами 5 и выравнивают поле металлическими обкладками (фольга на барьерах). В результате Uпр повышается в
2,5 раза.
Изоляция силовых трансформаторов и высоковольтных вводов.
Обкладки выравнивают поле в радиальном и аксиальном направлениях. Наиболее важно выровнять поле в аксиальном направлении для уменьшения длины ввода. Для этого уступы делают одинаковыми. На рис. 2.4 приведены эпюры распределения напряженностей электрического поля в радиальном (а) и аксиальном (б) направлениях маслобарьерного ввода.
Токоведущий стержень обматывается несколькими слоями бумаги. Основную электрическую прочность изоляции ввода обеспечивает масло, находящееся внутри покрышки.
2) Бумажно-масляный ввод конденсаторного типа на класс напряженияU ≥ 220 кВ. Ввод изготавливается путем намотки на токоведущий стержень (или трубу) изоляционного тела из бумаги. Через каждые 2…4 мм намотки бумаги в тело закладываются конденсаторные обкладки из алюминиевой фольги для выравнивания поля в осевом и радиальном направлениях. После намотки тело пропитывается маслом в вакууме, а после сборки ввод герметизируется.
Рис. 2.3. Конструктивная схема маслобарьерного ввода:
1 – токопровод (стержень); 2 – высоковольтный фланец; 3 – заземленный фланец; 4 – фарфоровая рубашка; 5 – барьеры с обкладками; 6 – масло
Рис. 2.4. Распределение напряженности электрического поля в радиальном (а) и аксиальном (б) направлениях ввода: rc – радиус токопровода (стержня); r1 – радиус первой обкладки (фольги); r2 – радиус второй обкладки (фольги)rф – радиус обкладки у фланца (заземлена); ∆hс – длина уступа изоляции у стержня; ∆h1 – длина уступа на первом барьере; ∆h2 – длина уступа на втором барьере; ∆hф – длина уступа на барьере у фланца.
-
Изоляция силовых кабелей различного класса напряжения.
Электрические кабели – это гибкие изолированные проводники, снабженные защитными оболочками, которые предохраняют изоляцию от внешних механических и иных воздействий. Основными элементами силовых кабелей являются проводники – жилы, изоляция по отношению к земле и между жилами, герметичная металлическая оболочка и защитные покровы.
Основное назначение кабелей – передача электрической энергии от подстанции к потребителям.
Силовые кабели высокого напряжения выполняются 4 типов:
1) кабели с бумажной изоляцией и вязкой пропиткой на напряжение до 35 кВ (рабочая напряженность ЕРАБ = 2…3 кВ/мм);
2) кабели с бумажной изоляцией с пропиткой маслом под давлением – маслонаполненные кабели: 2…3 атм – низкое давление (ЕРАБ = 3…5 кВ/мм); 4…5 атм – среднее давление (ЕРАБ = 6…8 кВ/мм); 8…15 атм – высокое давление (ЕРАБ = 10…15 кВ/мм);
3) кабели с монолитной полимерной изоляцией (полиэтилен, фторопласт и др.).
4) кабели из сшитого полиэтилена.
Кроме этого, нашли применение кабели в трубах под давлением масла или газа. Разрабатываются криогенные кабели с охлаждением до температуры жидкого азота (77 К) или жидкого гелия (5 К). Кабели выполняются на напряжение до 500 кВ. Разрабатываются кабели на напряжение 750…1150 кВ.
На рис. приведена схема устройства трехфазного кабеля с поясной изоляцией. Такие кабели выпускаются на рабочее напряжение до 10 кВ. На 35 кВ выпускаются кабели с отдельно освинцованными жил ами и броней из стальных лент типа АОСБ (А – алюминиевая жила, О– отдельно освинцованные жилы, СБ – броня стальными лентами).
Р ис. 2.7. Схема устройства изоляции кабелей до 35 кВ:1 – жила; 2 – фазная изоляция; 3 – поясная изоляция; 4 – герметичное покрытие; 5 – подушка; 6 – броня; 7 – антикоррозионное покрытие; 8 – наполнитель (джут)
На рис. ниже приведена схема устройства маслонаполненного кабеля на рабочее напряжение 110 кВ. Как правило, выполняются однофазными в свинцовой оболочке с броней из круглых или плоских проволок. Например, типа МССК-110,где М – маслонаполненный; С – среднего давления; С – свинцовый экран; К – броня круглой стальной проволокой.
Схема устройства изоляции кабелей до 35 кВ:
1 – жила; 2 – фазная изоляция; 3 – поясная изоляция; 4 – герметичное покрытие; 5 – подушка; 6 – броня; 7 – антикоррозионное покрытие; 8 – наполнитель (джут)
-
Изоляция вращающихся машин.
К вращающимся машинам высокого напряжения относятся турбо- и гидрогенераторы, синхронные компенсаторы и двигатели большой мощности с номинальным напряжением 3 кВ и выше. Они выполняют важные функции в энергосистемах и на промышленных предприятиях.
К их изоляции предъявляются очень высокие требования. Гидрогенераторы разрабатываются и изготавливаются на напряжение до 220 кВ. Устройство изоляции вращающейся машины высокого напряжения определяется конструкцией ее статорной обмотки. Изоляция статорных обмоток подразделяется на
главную (корпусную) и продольную. Главная – изоляция между проводниками обмотки и корпусом. Она имеет разную конструкцию на пазовых и лобовых частях катушек, а также на выводах (линейных и у нейтрали).
Междуфазная изоляция - изоляция между обмотками различных фаз.
К продольной относится изоляция между витками одной катушки, т.е. междувитковая (у стержневых обмоток отсутствует), а также изоляция между уложенными в одном пазу катушками.
Междувитковой изоляцией, а также изоляцией между элементарными проводниками обычно служит собственная изоляция обмоточных проводов.
Б ольшое значение имеет регулирование электрического поля в изоляции статорной обмотки. Основная задача регулирования электрических полей – устранение частичных разрядов в воздушных зазорах между поверхностью изоляции и стенками пазов и устранение скользящих разрядов по поверхности изоляции, в местах выхода обмоток из паза статора, где поле получается резконеоднородным. Для этого используются полупроводящие покрытия из железистой асбестовой ленты и различные лаки. На рис. приведено устройство высоковольтной изоляции в пазу электрической машины.
Схема устройства высоковольтной изоляции электрической машины: 1 – статор; 2 – проводник сплошной; 3 – проводник полый; 4 – витковая (продольная) изоляция; 5 – главная корпусная изоляция; 6 – полупроводящее покрытие; 7 – прокладки; 8 – клин.
Изоляционные материалы, которые используются в электрических машинах, изготавливают на основе слюды (миканит, микаленты, микафорий). Широко используются компаунды (термопластичные), в качестве связующих применяют термореактивные лаки и смолы.
-
Изоляция силовых конденсаторов.
Назначение конденсаторов:
1)улучшение cos ϕ;
2)ВЧ-связь;
3)компенсация сдвига по фазе между током и напряжением;
4)выпрямительные установки – фильтры и др.;
5)высоковольтные импульсные установки.
В качестве изоляции используются: газ, жидкости, твердые неорганические материалы, твердые органические материалы. Твердая изоляция в высоковольтных конденсаторах (чаще органическая) – бумага, пленки с пропиткой маслом. Конденсатор характеризуется удельной запасаемой энергией, например Дж/дм3: