Файл: Вопросы к экзамену по дисциплине Электроэнергетика.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.12.2023

Просмотров: 164

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
.

Высоковольтные конденсаторы разного назначения, разных номинальных напряжений и реактивной мощности устроены одинаково: состоят из пакетов секций, соединенных последовательно-параллельнои расположенных в герметизированном корпусе, залитом пропиточной жидкостью.

Основным элементом любого силового конденсатора является секция – спирально намотанный рулон из лент диэлектрика и алюминиевых обкладок, выполняющих роль электродов (рис. ). Секции после намотки сплющивают для уменьшения объема.

Устройство секции высоковольтного конденсатора:

1 – фольга; 2 – диэлектрик (слои бумаги, пленки); 3 – выводы.


  1. Молния как источник грозовых перенапряжений.


Молния - разновидность газового разряда при очень большой длине искры. Общая длина канала молнии достигает нескольких километров, причем значительная часть этого канала находится внутри грозового облака. В облаке образуется несколько изолированных друг от друга скоплений зарядов ( в нижней части облака скапливаются преимущественно заряды отрицательной полярности), молния бывает обычно многократной, т.е. состоит из нескольких единичных разрядов, развивающихся по одному и тому же пути.

Молния представляет собой электрический разряд между облаком и землей или между облаками. Молнии предшествует процесс разделения и накопления электрических зарядов в грозовых облаках, происходящий в результате возникновения в облаках мощных восходящих воздушных потоков и интенсивной конденсации в них водяных паров.

Капли воды, достигшие области отрицательных температур, замерзают. Замерзание начинается с поверхности капли, которая покрывается тонкой корочкой льда. Выделяющееся при этом тепло поддерживает температуру внутри капли около 0С. Имеющиеся в воде положительные ионы под действием разности температур перемещаются к поверхностному слою капли и заряжают его положительно, в то время как жидкой части капли (сердцевине) сообщается при этом избыточный отрицательный заряд. Когда замерзает сердцевина капли, то вследствие ее расширения ранее замерзший поверхностный слой лопается и его положительно заряженные осколки уносятся потоком воздуха в верхние части облака. Таким образом, нижняя часть грозового облака оказывается заряженной отрицательно, а верхняя положительно. Это один из основных процессов электризации грозовых облаков, и поэтому в большинстве случаев (до 90%) молнии бывают отрицательными, т.е. переносят на землю отрицательный заряд.


Грозовое облако, заряженное с нижней стороны в основном отрицательными зарядами, образует гигантский конденсатор, другой «обкладкой» которого является земля, где на поверхности индуктируются положительные заряды.

По мере концентрации в нижней части облака отрицательных зарядов увеличивается напряженность электрического поля, и когда она достигает критического значения (20-24 кВ/см в зависимости от высоты облака над землей), происходит ионизация воздуха и в сторону земли начинает развиваться разряд.

Механизм развития молнии

1)Начальная стадия – лидерная

Молния представляет собой относительно медленно (V1,5105 м/с) развивающийся слабо светящийся канал – лидер. Зона ионизации лидера имеет избыточный заряд того же знака, что и облако. Заряды облака и лидера индуктируют на поверхности земли и на расположенных на ней объектах заряды другого знака. По мере приближения лидера к земле индуктированный заряд и напряженность поля на вершинах возвышающихся над поверхностью земли объектах возрастают и с них могут начать развиваться встречные лидеры, имеющие заряды, по знаку обратные заряду лидера. Ток в лидерной стадии молнии имеет порядок десяток и сотен ампер.

2) Главный разряд

Когда канал развивающегося от облака лидера приближается к земле или к одному из встречных лидеров, то между ними на расстоянии 25-100 м возникает высокая напряженность электрического поля, среднее значение которой оценивается в 10 кВ/см. Промежуток этот пробивается за несколько микросекунд, и в нем выделяется энергия порядка 0,5-5 МДж, которая расходуется на нагрев и термоионизацию. Проводимость этой части канала резко возрастает, и зона повышенной напряженности перемещается к облаку со скоростью от 1,5107 до 1,5108 м/с (0,05-0,5 скорости света). Процесс этот называется главным разрядом и сопровождается сильным свечением канала разряда. Ток в канале за 5-10 мкс достигает десятков и даже одной – двух сотен килоампер, а затем за время 25-200 мкс спадает до половины амплитудного значения. В течении этого очень короткого времени канал разряда разогревается до температуры 20-30 тыс.С.

При нагревании канал разряда быстро расширяется, что вызывает распространение в окружающем воздухе ударной волны, имеющей на своем фронте высокое давление и воспринимаемое как гром. Во время главного разряда происходит нейтрализация зарядов лидера.

3) Завершающая (финальная) стадия



По каналу в течении десятков миллисекунд проходит ток порядка десятков и сотен ампер. В это время нейтрализуются заряды облака. Часто на ток финальной стадии накладываются импульсы тока повторных разрядов, во время которых разряжаются на землю скопления зарядов, расположенные в разных местах по высоте грозового облака. Лидер повторных разрядов – так называемый стреловидный лидер – движется со скоростью превосходящей скорость лидера первого разряда и имеющей порядок 106 м/с, поскольку он развивается по уже образованному каналу. Скорости нарастания тока главного разряда в повторных разрядах выше, чем в первом, а амплитуды ниже. Яркие вспышки канала при повторных разрядах воспринимаются как молнии. Чаще всего длительность удара молнии не превышает 0,1 с.

Электрические характеристики молнии

Переход от лидерной стадии к главному разряду можно имитировать замыканием на землю вертикального заряженного провода .Будем считать, что во время лидерной стадии сформировался проводящий канал (вертикальный провод) с постоянной плотностью отрицательного заряда на единицу длины (Кл/м) . При замыкании ключа К происходит нейтрализация отрицательного заряда за счет положительных зарядов, поступающих в канал молнии с поверхности земли.

Если волна нейтрализации распространяется вверх со скоростью V , то амплитуда тока: IM= V.

Если провод замыкается на землю через некоторое сопротивление R, то ток уменьшается и определяется как , где z – эквивалентное волновое сопротивление канала молнии (300-600 Ом)

При таких значениях z влияние сопротивления заземления, по крайней мере до R=50 Ом, невелико и с достаточной степенью точности для расчетов молниезащиты можно принимать эквивалентное волновое сопротивление канала молнии бесконечно большим, т.е. рассматривать молнию как источник тока.

С точки зрения электромагнитного воздействия на установки ВН важное значение имеют форма и значение тока главного разряда. Приближенно он имеет вид апериодического импульса

Важнейшей характеристикой является максимальное значение тока молнии IM , часто называемое просто током молнии.

Крутизна фронта тока молнии
определяет индуктивные падения напряжения в проводниках и индуктированные напряжения магнитно-связанных цепях. Однако удобнее бывает пользоваться средней крутизной это не вносит существенной ошибки при способе определения продолжительности фронта, показанном на рис.

Между амплитудой и крутизной фронта тока молнии имеется слабая положительная корреляционная связь: большим токам соответствует большая крутизна. Однако данных пока недостаточно, поэтому принято считать IMиa независимыми случайными величинами. В этом случае:P(IM,a)≈ P(IM)+ P(a)

где P(IM) и P(a) – вероятности того что ток молнии и крутизна будут равны или превысят заданные значения , .

П ри проектировании молниезащитных устройств необходимо учитывать тепловое и электродинамическое действия молнии. Значения зарядов, переносимых молнией, характеризуют энергию, выделяющуюся в точке удара молнии, и расплавление металла в этом месте. Интеграл квадрата тока , называемый также иногда интегралом действия или импульсом квадрата тока, определяет механические воздействия и нагрев проводников при прохождении по ним тока молнии.







  1. Защита от прямых ударов молнии.


Для защиты объектов от поражения молнией используются молниеотводы. В зависимости от защищаемого объекта применяют стержневые (подстанции) или тросовые (ВЛ) молниеотводы. Необходимым условием эффективной работы молниеотводов является их хорошее заземление.

Защита от прямых ударов молнии осуществляется с помощью молниеотводов. Молниеотвод представляет собой возвышающееся над защищаемым объектом устройство, через которое ток молнии, минуя защищаемый объект, отводится в землю.
Молниеотвод состоит из молниеприемника, непосредственно воспринимающего на себя удар молнии, токоотвода и заземлителя.

Защитное действие молниеотводом основано на том, что во время лидерной стадии на вершине молниеотвода скапливаются заряды и наибольшие напряженности электрического поля создаются на пути между развивающимся лидером и вершиной молниеотвода. Возникновение и развитие с молниеотвода встречного лидера еще более усиливает напряженность поля на этом пути, что окончательно предопределяет удар в молниеотвод. Защищаемый объект, более низкий чем молниеотвод, будучи расположен поблизости от него, оказывается за экранированным молниеотводом и встречным лидером и поэтому практически не может быть поражен молнией. Защитное действие молниеотвода характеризуется его зоной защиты.

Зона защиты молниеотвода – пространство вблизи молниеотвода, вероятность попадания молнии в которое не превышает определенного достаточно малого значения.

Молниеотводы по типу молниеприемников подразделяются на стержневые и тросовые. Стержневые молниеотводы выполняются в виде вертикально установленных стержней (мачт), соединенных с заземлителем. Тросовые – в виде горизонтально подвешенных проводов. По опорам, к которым крепится трос, прокладываются токоотводы, соединяющие трос с заземлителем.

О ткрытые распределительные устройства подстанций защищаются стержневыми молниеотводами, а линии электропередачи – тросовыми.