Файл: Арзамасский государственный педагогический институт имени А. П. Гайдара Кафедра математического анализа.rtf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.12.2023
Просмотров: 41
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, где , . Если при , и при , то при некотором дополнительном условии . Важность достижения малой дисперсии в знакопостоянном случае показывает следующее утверждение: если и , где , то , а . Моделируя подходящую цепь Маркова на ЭВМ, получают статистическую оценку линейных функционалов от решения интегрального уравнения второго рода. Это даёт возможность и локальной оценки решения на основе представления: , где . Методом Монте-Карло оценка первого собственного значения интегрального оператора осуществляется интерациональным методом на основе соотношения . Все рассмотренные результаты почти автоматически распространяются на системы линейных алгебраических уравнений вида . Решение дифференциальных уравнений осуществляется методом Монте-Карло на базе соответствующих интегральных соотношений.
§2. Способ усреднения подынтегральной функции.
В качестве оценки определённого интеграла принимают
,
где n – число испытаний; - возможные значения случайной величины X, распределённой равномерно в интервале интегрирования , их разыгрывают по формуле , где - случайное число.
Дисперсия усредняемой функции
равна
,
где , . Если точное значение дисперсии вычислить трудно или невозможно, то находят выборочную дисперсию (при n>30) , или исправленную дисперсию (при n<30) , где .
Эти формулы для вычисления дисперсии применяют и при других способах интегрирования, когда усредняемая функция не совпадает с подынтегральной функцией.
В качестве оценки интеграла , где область интегрирования D принадлежит единичному квадрату , , принимают
, (*)
где S – площадь области интегрирования; N – число случайных точек , принадлежащих области интегрирования.
Если вычислить площадь S трудно, то в качестве её оценки можно принять ; в этом случае формула (*) имеет вид
,
где n – число испытаний.
В качестве оценки интеграла , где область интегрирования V принадлежит единичному кубу , , , принимают , где V – объём области интегрирования, N – число случайных точек , принадлежащих области интегрирования.
Если вычислить объём трудно, то в качестве его оценки можно принять , в этом случае формула (**) имеет вид , где n – число испытаний.
Задача: найти оценку определённого интеграла .
Решение. Используем формулу . По условию, a=1, b=3,
. Примем для простоты число испытаний n=10.Тогда оценка , где возможные значения разыгрывается по формуле .
Результаты десяти испытаний приведены в таблице 1.
Случайные числа взяты из таблицы приложения.
Таблица 1.
Из таблицы 1 находим . Искомая оценка
§3. Способ существенной выборки, использующий «вспомогательную плотность распределения».
В качестве оценки интеграла принимают , где n – число испытаний; f(x) – плотность распределения «вспомогательной» случайной величины X, причём ; - возможные значения X, которые разыгрывают по формуле .
Функцию f(x) желательно выбирать так, чтобы отношение при различных значениях x изменялось незначительно. В частности, если , то получим оценку .
Задача. Найти оценку интеграла
.
Решение. Так как , то в качестве плотности распределения «вспомогательной» случайной величины X примем функцию . Из условия найдём . Итак, .
Запишем искомый интеграл так:
.
Таким образом, интеграл I представлен в виде математического ожидания функции . В качестве искомой оценки примем выборочную среднюю (для простоты ограничимся десятью испытаниями):
,
где - возможные значения X, которые надо разыграть по известной плотности . По правилу (для того, чтобы разыграть возможное значение непрерывной случайной величины X, зная её плотность вероятности f(x), надо выбрать случайное число и решить относительно уравнение
, или уравнение ,
где a – наименьшее конечно возможное значение X), имеем . Отсюда находим явную формулу для разыгрывания возможных значений X:
.
В таблице 2 приведены результаты 10 испытаний.
Сложив числа последней строки таблицы 2, получим . Искомая оценка равна .
Таблица 2.
§4. Способ, основанный на истолковании интеграла как площади.
Пусть подынтегральная функция неотрицательна и ограничена: , а двумерная случайная величина распределена равномерно в прямоугольнике D с основанием и высотой . Тогда двумерная плотность вероятности для точек, принадлежащих D; вне D.
В качестве оценки интеграла принимают , где n – общее число случайных точек , принадлежащих D; - число случайных точек, которые расположены под кривой .
Задача. Найти оценку интеграла .
Решение. Используем формулу .
В интервале (0,2) подынтегральная функция неотрицательна и ограничена, причём ; следовательно, можно принять c=4.
Введём в рассмотрение двумерную случайную величину (X,Y), распределённую равномерно в прямоугольнике D с основанием и высотой с=4, плотность вероятности которой .
Разыгрываем n=10 случайных точек , принадлежащих прямоугольнику D. Учитывая, что составляющая X в интервале (0,2) распределена равномерно с плотностью и составляющая Y в интервале (0,4) распределена равномерно с плотностью , разыграем координаты случайной точки , принадлежащей прямоугольнику D, по паре независимых случайных чисел :
§2. Способ усреднения подынтегральной функции.
В качестве оценки определённого интеграла принимают
,
где n – число испытаний; - возможные значения случайной величины X, распределённой равномерно в интервале интегрирования , их разыгрывают по формуле , где - случайное число.
Дисперсия усредняемой функции
равна
,
где , . Если точное значение дисперсии вычислить трудно или невозможно, то находят выборочную дисперсию (при n>30) , или исправленную дисперсию (при n<30) , где .
Эти формулы для вычисления дисперсии применяют и при других способах интегрирования, когда усредняемая функция не совпадает с подынтегральной функцией.
В качестве оценки интеграла , где область интегрирования D принадлежит единичному квадрату , , принимают
, (*)
где S – площадь области интегрирования; N – число случайных точек , принадлежащих области интегрирования.
Если вычислить площадь S трудно, то в качестве её оценки можно принять ; в этом случае формула (*) имеет вид
,
где n – число испытаний.
В качестве оценки интеграла , где область интегрирования V принадлежит единичному кубу , , , принимают , где V – объём области интегрирования, N – число случайных точек , принадлежащих области интегрирования.
Если вычислить объём трудно, то в качестве его оценки можно принять , в этом случае формула (**) имеет вид , где n – число испытаний.
Задача: найти оценку определённого интеграла .
Решение. Используем формулу . По условию, a=1, b=3,
. Примем для простоты число испытаний n=10.Тогда оценка , где возможные значения разыгрывается по формуле .
Результаты десяти испытаний приведены в таблице 1.
Случайные числа взяты из таблицы приложения.
Таблица 1.
Номер i | | | |
1 2 3 4 5 6 7 8 9 10 | 0,100 0,973 0,253 0,376 0,520 0,135 0,863 0,467 0,354 0,876 | 1,200 2,946 1,506 1,752 2,040 1,270 2,726 1,934 1,708 2,752 | 2,200 3,946 2,506 2,752 3,040 2,270 3,726 2,934 2,708 3,752 |
Из таблицы 1 находим . Искомая оценка
§3. Способ существенной выборки, использующий «вспомогательную плотность распределения».
В качестве оценки интеграла принимают , где n – число испытаний; f(x) – плотность распределения «вспомогательной» случайной величины X, причём ; - возможные значения X, которые разыгрывают по формуле .
Функцию f(x) желательно выбирать так, чтобы отношение при различных значениях x изменялось незначительно. В частности, если , то получим оценку .
Задача. Найти оценку интеграла
.
Решение. Так как , то в качестве плотности распределения «вспомогательной» случайной величины X примем функцию . Из условия найдём . Итак, .
Запишем искомый интеграл так:
.
Таким образом, интеграл I представлен в виде математического ожидания функции . В качестве искомой оценки примем выборочную среднюю (для простоты ограничимся десятью испытаниями):
,
где - возможные значения X, которые надо разыграть по известной плотности . По правилу (для того, чтобы разыграть возможное значение непрерывной случайной величины X, зная её плотность вероятности f(x), надо выбрать случайное число и решить относительно уравнение
, или уравнение ,
где a – наименьшее конечно возможное значение X), имеем . Отсюда находим явную формулу для разыгрывания возможных значений X:
.
В таблице 2 приведены результаты 10 испытаний.
Сложив числа последней строки таблицы 2, получим . Искомая оценка равна .
Таблица 2.
Номер i | | | | | |
1 2 3 4 5 6 7 8 9 10 | 0,100 0,973 0,253 0,376 0,520 0,135 0,863 0,467 0,354 0,876 | 0,140 0,980 0,326 0,459 0,600 0,185 0,894 0,550 0,436 0,905 | 1,150 2,664 1,385 1,582 1,822 1,203 2,445 1,733 1,546 2,472 | 1,140 1,980 1,326 1,459 1,600 1,185 1,894 1,550 1,436 1,905 | 1,009 1,345 1,044 1,084 1,139 1,015 1,291 1,118 1,077 1,298 |
§4. Способ, основанный на истолковании интеграла как площади.
Пусть подынтегральная функция неотрицательна и ограничена: , а двумерная случайная величина распределена равномерно в прямоугольнике D с основанием и высотой . Тогда двумерная плотность вероятности для точек, принадлежащих D; вне D.
В качестве оценки интеграла принимают , где n – общее число случайных точек , принадлежащих D; - число случайных точек, которые расположены под кривой .
Задача. Найти оценку интеграла .
Решение. Используем формулу .
В интервале (0,2) подынтегральная функция неотрицательна и ограничена, причём ; следовательно, можно принять c=4.
Введём в рассмотрение двумерную случайную величину (X,Y), распределённую равномерно в прямоугольнике D с основанием и высотой с=4, плотность вероятности которой .
Разыгрываем n=10 случайных точек , принадлежащих прямоугольнику D. Учитывая, что составляющая X в интервале (0,2) распределена равномерно с плотностью и составляющая Y в интервале (0,4) распределена равномерно с плотностью , разыграем координаты случайной точки , принадлежащей прямоугольнику D, по паре независимых случайных чисел :