ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.12.2023
Просмотров: 325
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Экзамен(ЧГМА)
Раздел Биология клетки.
1.Клеточная теория, её история, основные положения, современное состояние.
Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений,животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве единого структурного элемента живых организмов.
Представление о кл.строении организма складывалось постепенно и известно как кл.теория.Она непрерывно связана с развитием методов исследования клетки и техники микроскопирования.
Впервые микроскоп для исследования применил Р.Гук в 1665г рассматривал дерево и обнаружил ячейки клетки,которые назвал цитология.
Антонио Левенгук в 1674г усовершенствовал микроскоп и откурыл мир простейших.
В 1831г англ. Ботаник Р.Броун обнаружил в клетке ядро,что позволило в 1838-1839г сформултровать кл.теорию согласно которой
Клетка-наименьшая структурная и функциональная единица жив.организмов.
В 1858г Вирхов ввел положение согласно к-му,клетка возникает из предшествующей клетки,,назвал патология.
В 19 веке было установлено ,что живое вещество клетки,т.е кл.содержимое названо протоплазмой ученым Я.Пуркинье в 1840г.
В 1866г Э.Геккель установил роль ядра в хранении и передаче насл.информации.Был открыт амитоз,митоз,мейоз.
В 1888г были описаны хромосомы и некоторые органоиды клетки.
Первый микроскоп изобретен в 1828г Э.Руска.В 1839г русский инженер В.Зворыкин усовершенствовал в 250 тыс.раз.
Основные положения кл.теории:
1)Клетка-это основная структурно-функц и генетическая единица живого организма.
2)Клетки всех одноклеточных и многокл-ых сходны по строению,хим.составу,и важнейших проявлениях процессов ж.д
3)Каждая клетка образуется в результате деления материнской.
4)Клетка многоклеточного орагнизма специализирована.
5)Клетка является открытой системой,через к-ю проходят и преобразуются потоки инф-ции.
т.о Клеточное строение всего живого,общность хим.состава говорит о том,что на земле все живое имеет единое происхождение.
2. Клеточная организация про- и эукариот. Гипотезы происхождения эукариот.
Прокариоты — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами . Единственная крупная кольцевая у некоторых видов — линейная двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки так называемый нуклеоид не связана с белками-гистонами так называемого хроматина. К прокариотам относятся бактерии, в том числе цианобактерии сине-зелёные водоросли, и археи. Потомками прокариотических клеток— митохондрии и пластиды. Основное содержимое клетки, заполняющее весь её объём, — вязкая зернистая цитоплазма.
Эукариоты — организмы, обладающие оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейныхдвухцепочных молекулах, прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства кроме динофлагеллят комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов эндоплазматическая сеть, аппарат Гольджи и др.. Представители эвглена зеленая, инфузория-туфелька.
Гипотезы
Существует две точки зрения. Согласно первой гипотезе, все клеточные органоиды ведут свое происхождение от плазмалеммы: они образовались путем впячивания отдельных участков ипоследующей дифференциации и специализации. Вторую гипотезу предложила Л. Моргулис симбиотическую теорию: никоторые мембраны способны к размножению делением, потомки утратившие способность к существованию вне клетки хозяина привел к образованию эукариотических клеток.
3. Эукариотическая клетка, основные структурные компоненты, их строение и функции: органоиды, цитоплазма, включения.
Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром; подразделяется на гиалоплазму основное вещество цитоплазмы, органоиды постоянные компоненты цитоплазмы и включения временные компоненты цитоплазмы. Химический состав цитоплазмы: основу составляет вода 60–90% всей массы цитоплазмы, различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение.
Функции:
1. всех компонентов клетки в единую систему
2среда для прохождения многих биохимических и физиологических процессов
3среда для существования и функционирования органоидов.
Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.
Эндоплазматическая сеть ЭПС—одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Два вида ЭПС: 1 шероховатая гранулярная, содержащая на своей поверхности рибосомы, и 2 гладкая агранулярная, мембраны которой рибосом не несут. Функции: 1 транспорт веществ из одной части клетки в другую, 2 разделение цитоплазмы клетки на компартменты «отсеки», 3 синтез углеводов и липидов гладкая ЭПС, 4 синтез белка шероховатая ЭПС, 5 место образования аппарата Гольджи.
Аппарат Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных из 4-6 «цистерн» с расширенными краями. Функции: 1 накопление белков, липидов, углеводов, 2 модификация поступивших органических веществ, 3 «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4 секреция белков, липидов, углеводов, 5 синтез углеводов и липидов, 6 место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.
Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки диаметр от 0,2 до 0,8 мкм, содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Функции: 1 внутриклеточное переваривание органических веществ, 2 уничтожение ненужных клеточных и неклеточных структур, 3 участие в процессах реорганизации клеток.
Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Функции: 1 накопление и хранение воды, 2 регуляция водно-солевого обмена, 3 поддержание тургорного давления, 4 накопление водорастворимых метаболитов, запасных питательных веществ, 5 окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян.
Митохондрия — двумембранная гранулярная или нитевидная органелла толщиной около 0,5 мкм. По форме могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Ограничена двумя мембранами. Наружная мембрана митохондрий 1 гладкая, внутренняя 2 образует многочисленные складки — кристы. Функции 1 синтез АТФ, 2 кислородное расщепление органических веществ.
Пластиды — органоиды эукариотических растений. Покрыты двойной мембраной и имеют в своём составе множество копий кольцевой ДНК. Три основных типа:
Лейкопласты — неокрашенные пластиды, как правило выполняют запасающую функцию. В лейкопластах клубней картофеля накапливается крахмал. Лейкопласты высших растений могут превращаться в хлоропласты или хромопласты.
Хромопласты — пластиды, окрашенные в жёлтый, красный, зеленый или оранжевый цвет. Окраска хромопластов связана с накоплением в них каротиноидов. Хромопласты определяют окраску осенних листьев, лепестков цветов, корнеплодов, созревших плодов.
Хлоропласты
— пластиды, несущие фотосинтезирующие пигменты — хлорофиллы. Имеют зелёную окраску у высших растений, харовых и зелёных водорослей.
Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Различают два типа рибосом: 1 эукариотические с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S и 2 прокариотические соответственно 70S, 30S, 50S. Функция : сборка полипептидной цепочки синтез белка.
Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Микрофиламенты — нити диаметром 5–7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции: 1 определение формы клетки, 2 опора для органоидов, 3 образование веретена деления, 4 участие в движениях клетки, 5 организация тока цитоплазмы.
Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек 9 триплетов, соединенных между собой через определенные интервалы поперечными сшивками. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. Функции: 1 обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2 центр организации цитоскелета.
К органоидам движения относятся реснички инфузории, эпителий дыхательных путей, жгутики жгутиконосцы, сперматозоиды, ложноножки корненожки, лейкоциты, миофибриллы мышечные клетки и др.
Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. Длина жгутика достигает 150 мкм, реснички в несколько раз короче.
Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.
Включения — это необязательные компоненты клетки, появляющиеся и исчезающие в зависимости от интенсивности и характера обмена веществ в клетке и от условий существования организма. Включения имеют вид зерен, глыбок, капель, вакуолей, гранул различной величины и формы. Их химическая природа очень разнообразна. В зависимости от функционального назначения включения объединяют в группы:
Среди трофических включений запасных питательных веществ важную роль играют жиры и углеводы. Белки как трофические включения используются лишь в редких случаях в яйцеклетках в виде желточных зерен.
Пигментные включения придают клеткам и тканям определенную окраску.
Секреты и инкреты накапливаются в железистых клетках, так как являются специфическими продуктами их функциональной активности.
Экскреты — конечные продукты жизнедеятельности клетки, подлежащие удалению из нее.