ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.12.2023
Просмотров: 327
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Хромосомы разделяются на хроматиды как при митозе. Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.
Телофаза II
Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.
Рекомбинация генов- появление новых сочетаний генов, ведущее к новым комбинациям признаков у потомства.
Мед.значение: создании новых и совершенствовании существующих пород с.-х. животных.
Эволюционное значение: сочетанием мутационного процесса и отбора, позволяющим дать адекватное объяснение первоначальным стадиям эволюции и изменениям простых признаков у высших организмов
10. Организация наследственного материала у про-и эукариот. Химическая организация генетического материла. Структура ДНК, свойства и функции.
Геном современных прокариотических клеток характеризуется относительно небольшими размерами. У кишечной палочки Е. coli он представлен кольцевой молекулой ДНК длиной около 1 мм, которая содержит 4·106 пар нуклеотидов, образующих около 4000 генов. Основная масса ДНК прокариот около 95% активно транскрибируется в каждый данный момент времени. Как было сказано выше, геном прокариотической клетки организован в виде нуклеоида — комплекса ДНК с негистоновыми белками. У эукариот объем наследственного материала значительно больше. У дрожжей он составляет 2,3 · 107 п.н., у человека общая длина ДНК в диплоидном хромосомном наборе клеток — около 174 см. Его геном содержит 3·109 п.н. и включает по последним данным 30—40 тыс. генов.
Плазмиды — это широко распространенные в живых клетках внехромосомные генетические элементы, способные существовать и размножаться в клетке автономно от геномной ДНК.
В прокариотических бактериальных клетках обнаружены плазмиды, которые несут наследственный материал, определяющий такие свойства, как способность бактерий к конъюгации, а также их устойчивость к некоторым лекарственным веществам.
В эукариотических клетках внехромосомная ДНК представлена генетическим аппаратом органелл — митохондрий и пластид, а также нуклеотидными последовательностями, не являющимися жизненно необходимыми для клетки вирусоподобными частицами. Наследственный материал органелл находится в их матриксе в виде нескольких копий кольцевых молекул ДНК, не связанных с гистонами.
Хим. Организация ген. материала: материальным субстратом наследственности и изменчивости являются нуклеиновые кислоты, которые были обнаружены Ф. Мишером 1868 в ядрах клеток гноя. Нуклеиновые кислоты являются макромолекулами, т.е. отличаются большой молекулярной массой. Это полимеры, состоящие из мономеров — нуклеотидов, включающих три компонента: сахар пентозу, фосфат и азотистое основание пурин или пиримидин. К первому атому углерода в молекуле пентозы С-1 присоединяется азотистое основание аденин, гуанин, цитозин, тимин или урацил, а к пятому атому углерода С-5 с помощью эфирной связи — фосфат; у третьего атома углерода С-3 всегда имеется гидроксильная группа – ОН.
ДНК- макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов .Структура: представляет собой биополимер полианион, мономером которого является нуклеотид. Каждый нуклеотид состоит из остатка фосфорной кислоты, присоединённого по 5-положению к сахару дезоксирибозе, к которому также через гликозидную связь C—N по 1-положению присоединено одно из четырёх азотистых оснований. Две группы: пурины аденин [A] и гуанин [G] образованы соединёнными пяти- и шестичленным гетероциклами; пиримидины цитозин [C] и тимин [T] — шестичленным гетероциклом. Функции: 1. ДНК является носителем генетической информации. Функция обеспечивается фактом существования генетического кода.2. Воспроизведение и передача генетической информации в поколениях клеток и организмов. Функция обеспечивается процессом репликации.3. Реализация генетической информации в виде белков, а также любых других соединений, образующихся с помощью белков-ферментов. Функция обеспечивается процессами транскрипции и трансляции.
11. Молекулярное строение генов про- и эукариот. Принципы и этапы репликации ДНК
Важная особенность эукариотических генов – их прерывность. Это значит, что область гена, кодирующая белок, состоит из нуклеотидных последовательностей двух типов. Одни – экзоны – это участки ДНК, которые несут информацию и строении белка и входят в состав соответствующих РНК и белка. Другие – интроны – не кодируют структуру белка и в состав зрелой молекулы и-РНК не входят, хотя и транскрибируются. Процесс вырезания интронов – «ненужных» участков молекулы РНК и сращивания экзонов при образовании и-РНК осуществляется специальными ферментами и получил название Сплайсинг сшивание, сращивание. Экзоны обычно соединяются вместе в том же порядке, в котором они распологаются в ДНК. Однако не абсолютно все гены эукариот прерывисты. Иначе говоря, у некоторых генов, подобно бактериальным, наблюдается полное соответствие нуклеотидов последовательности первичной структуре кодируемых ими белков. Таким образом, ген эукариот во многом похож на оперон прокариот, хотя и отличается от него более сложной и протяженной регуляторной зоной, а также тем, что он кодирует обычно только один белок, а не несколько, как оперон у бактерии.
Основной чертой молекулярной организации прокариот является отсутствие в их клетках или вирионах — вирусных частицах, в случае вирусов ядра, отгороженного ядерной мембраной от цитоплазмы, если она существует. В отличие от эукариот, геном прокариот построен очень компактно. Количество некодирующих последовательностей нуклеотидов минимально, интроны редки. У прокариот для кодирования белков часто используются две или все три рамки считывания одной и той же последовательности нуклеотидов гена, что повышает кодирующий потенциал их генома без увеличения его размера. Простота строения генома прокариот объясняется их упрощенным жизненным циклом, на протяжении которого прокариотические клетки не претерпевают сложных дифференцировок, связанных с глобальным переключением экспрессии одних групп генов на другие.
Репликация ДНК — это процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки на матрице родительской молекулы ДНК. При этом генетический материал, зашифрованный в ДНК, удваивается и делится между дочерними клетками. Репликацию ДНК осуществляет фермент ДНК-полимераза.
Принцип: двойная спираль ДНК, состоящая из двух комплементарных полинуклеотидных цепей, раскручивается на отдельные цепи и одновременно начинается синтез новых полинуклеотидных цепей; при этом исходные цепи ДНК играют роль матриц. Новая цепь, синтезирующаяся на каждой из исходных цепей, идентична др. исходной цепи. Когда процесс завершается, образуются две идентичные двойные спирали, каждая из к-рых состоит из одной старой исходной и одной новой цепи. Таким образом от одного поколения к другому передается только одна из двух цепей, составляющих исходную молекулу ДНК, — так называемый полуконсервативный механизм репликации.
Этап: 1 узнавание точки началу репликации; 2 расплетание исходного дуплекса спирали;3 удержание его цепей в изолированном друг от друга состоянии;4 инициацию синтеза на них новых дочерних цепей;5 их рост;6 закручивание цепей в спираль и терминацию окончание синтеза.
12. Генетический код как способ записи наследственной информации. Свойства генетического кода. Кодовая система ДНК.
Генетический код – способ записи информации о структуре белков в молекуле ДНК. Система расположения нуклеотидов в молекуле ДНК, контролирующая последовательность расположения аминокислот в молекуле белка.
●специальный кодон – инициатор АУГ, служащий сигналом, запускающим трансляцию белка на рибосоме
●кодоны-терминаторы – УАА, УАГ и УГА, стоп – сигналы, прекращающие трансляцию.
Свойства генетического кода:
●Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
●Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.
●Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
●Специфичность — определённый кодон соответствует только одной аминокислоте ●Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.
●Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека
13. Структура и виды РНК. Роль РНК в процессе реализации наследственной информации.
Рибонуклеиновая кислота (РНК) – это однонитевой биополимер, в качестве мономеров которого выступают нуклеотиды. Матрицей для синтеза новых молекул РНК являются молекулы дезоксирибонуклеиновой кислоты (транскрипция РНК). В транскрипции РНК, происходящей в ядре клетки, участвует целый ряд ферментов, наиболее значимым из которых является РНК-полимераза.
Структура РНК.
Молекула имеет однонитевое строение. Полимер. В результате взаимодействия нуклеотидов друг с другом молекула РНК приобретает вторичную структуру, различной формы (спираль, глобула и т.д.). Мономером РНК является нуклеотид (молекула, в состав которой входит азотистое основание, остаток фосфорной кислоты и сахар (пептоза)). РНК напоминает по своему строению одну цепь ДНК. Нуклеотиды, входящие в состав РНК: гуанин, аденин, цитозин, урацил. Аденин и гуанин относятся к пуриновым основаниям, цитозин и урацил к пиримидиновым. В отличие от молекулы ДНК, в качестве углеводного компонента рибонуклеиновой кислоты выступает не дезоксирибоза, а рибоза. Вторым существенным отличием в химическом строении РНК от ДНК является отсутствие в молекуле рибонуклеиновой кислоты такого нуклеотида как тимин. В РНК он заменён на урацил. Функции РНК различаются в зависимости от вида рибонуклеиновый кислоты.
1) Информационная РНК (и-РНК).
Иногда данный биополимер называют матричной РНК (м-РНК). Данный вид РНК располагается как в ядре, так и в цитоплазме клетки. Основное назначение – перенос информации о строении белка от дезоксирибонуклеиновой кислоты к рибосомам, где и происходит сбор белковой молекулы. Относительно небольшая популяция молекул РНК, составляющая менее 1% от всех молекул.
2) Рибосомная РНК (р-РНК).
Самый распространенный вид РНК (около 90% от всех молекул данного вида в клетке). Р-РНК расположена в рибосомах и является матрицей для синтеза белковых молекул. Имеет наибольшие, по сравнению с другими видами РНК, размеры. Молекулярная масса может достигать 1,5 миллионов кДальтон и более.
3) Транспортная РНК (т-РНК).
Расположена, преимущественно, в цитоплазме клетки. Основное назначение- осуществление транспорта (переноса) аминокислот к месту синтеза белка (в рибосомы). Транспортная РНК составляет до 10% от всех молекул РНК, располагающихся в клетке. Имеет наименьше, по сравнению с другими РНК- молекулами, размеры (до 100 нуклеотидов).
14.Этапы реализации наследственной информации: транскрипция, трансляция.
Синтез белка состоит из двух этапов - транскрипции и трансляции.
I. Транскрипция (переписывание) - биосинтез молекул РНК, осуществляется в хромосомах на молекулах ДНК по принципу матричного синтеза. При помощи ферментов на соответствующих участках молекулы ДНК (генах) синтезируются все виды РНК (иРНК, рРНК, тРНК). Синтезируется 20 разновидностей тРНК, так как в биосинтезе белка принимают участие 20 аминокислот. Затем иРНК и тРНК выходят в цитоплазму, рРНК встраивается в субъединицы рибосом, которые также выходят в цитоплазму.
II. Трансляция (передача) - синтез полипептидных цепей белков, осуществляется в рибосомах. Она сопровождается следующими событиями: