Файл: Урок по теме Параллельность прямых и плоскостей. Бушева Инга Николаевна учитель математики.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 41

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, параллельны).

- Сформулируйте свойство параллельных прямых в пространстве. (Через точку вне данной прямой можно провести прямую, параллельную этой прямой, и притом только одну)

- Какие прямые в пространстве называются скрещивающимися? (Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости и не пересекаются)
Задание 1 Вставьте пропущенные слова (индивидуальные карточки)

1) Единственную плоскость можно задать через три точки, при этом они … на одной прямой. (не лежат)
2) Если … точки прямой принадлежат плоскости, то и вся прямая принадлежит плоскости. (две)
3) Две различные плоскости могут иметь только одну общую … (прямую)
4) Прямые являются … в пространстве, если они не пересекаются и … в одной плоскости. (параллельными,лежат)

5) Если прямая a лежит в плоскости α, прямая b не лежит в плоскости α, но пересекает ее в точке В а, то прямые а и b …(скрещивающиеся)
Пары обмениваются решениями и проверяют работы друг друга во время обсуждения этих вопросов вместе с учителем.

Критерии:

Всё правильно – 3 балла,
1 ошибка– 2 балла,
2 ошибки– 1 балл,
более 2 ошибок – 0 баллов.
Задание 2 Определите: верно, ли утверждение?

1. Если прямая проходит через вершину треугольника, то она лежит в плоскости треугольника.

Нет

2. Если прямые не пересекаются, то они параллельны.

Нет

3. Прямая m параллельна прямой n, прямая m параллельна плоскости α. Прямая n параллельна плоскости α.

Да

4. Все прямые пересекающие стороны треугольника лежат в одной плоскости.

Да

5. Прямая АВ и точки С, D не лежат в одной плоскости. Могут ли прямые АВ и СD пересекаться?

Нет

6. Прямые АВ и СD пересекаются. Могут ли прямые АС и ВD быть скрещивающимися?

Нет

7. Прямые а и в не лежат в одной плоскости. Можно ли провести прямую с, параллельную прямым а и в?

Нет

8. Прямая а, параллельная прямой в, пересекает плоскость α. Прямая с параллельна прямой в. Может ли прямая с лежать в плоскости α?

Нет

9. Прямая а параллельна плоскости α. Существует ли на плоскости α прямые, непараллельные а?

Да



Пары обмениваются решениями и проверяют работы друг друга во время обсуждения этих вопросов вместе с учителем.
Критерии:

всё правильно – 3 балла,
1, 2 ошибки– 2 балла,
3,4 ошибки– 1 балл,
более 4 ошибок – 0 баллов.

Задание 3Тест.

1.Прямые а и b скрещиваются с прямой с. Что можно сказать о прямых а и b?

а) взаимное расположение точно определить нельзя; +

б) скрещиваются или параллельны;

в) параллельны или пересекаются;

г) совпадают;

д) пересекаются или скрещиваются.

2. Выберите верное утверждение.

а) Две прямые называются параллельными, если они не имеют общих точек;

б) две прямые, параллельные третьей прямой, параллельны; +

в) две прямые, перпендикулярные третьей прямой, параллельны;

3. Прямая а, параллельная прямой b, пересекает плоскость α. Прямая с параллельна прямой b, тогда:

а) прямые а и с пересекаются;

б) прямая с лежит в плоскости α;

в) прямые а и с скрещиваются;

г) прямая b лежит в плоскости α;

д) прямые а и с параллельны. +

4. Каким может быть взаимное расположение прямых а и b, если через прямую а можно провести плоскость, параллельную прямой b?

а) скрещиваются или пересекаются;

б) пересекаются или параллельны;

в) скрещиваются или параллельны; +

г) только скрещиваются;

д) только параллельны.

5. Если две прямые не скрещиваются, то они

а) лежат в одной плоскости; +

б) только пересекаются;

в) совпадают;

г) только параллельны.
Пары обмениваются решениями и проверяют работы друг друга, ученики по очереди объясняют свое решение.

Критерии:

всё правильно – 3 балла,
1 ошибка– 2 балла,
2 ошибки– 1 балл,
более 2 ошибок – 0 баллов.
З
Дано: ВС=АС,

СС1 АА1,

АА1=22 см

Найти: СС1

Решение:

АА1СС1, АС = ВС С1– середина А1В (по т.Фалеса) 

С С1- средняя линия ∆АА1В 

С С1= АА1 = 11 см

Ответ: 11см.
адание 4
Задача (3 балла)


Пары обмениваются решениями и проверяют работы друг друга во время обсуждения этих вопросов вместе с учителем.

Блок – 3. Взаимное расположение в пространстве прямой и плоскости.
Цель блока:

- повторить и обобщить знания по теме взаимное расположение в пространстве прямой и плоскости;



- систематизировать полученные знания.
Актуализация опорных знаний. Проведем теоретическую разминку.

Учащиеся вспоминают учебный материал (при необходимости пользуются учебником) и составляют опорный конспект.

- Взаимное расположение в пространстве прямой и плоскости.


а




а




α

α



а α а  α а α

- Какие прямая и плоскость называются параллельными? (Прямая и плоскость называются параллельными, если они не пересекаются)

- Сформулируйте признак параллельности прямой и плоскости в пространстве. (Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.)



Задание 1 Тест. Учащиеся получают задание и выполняют его самостоятельно.
1. Прямые а и b параллельны одной плоскости . Как расположены прямые а и b относительно друг друга?

а) параллельны +

б) пересекаются +

в) скрещиваются +

2. Прямые а и b параллельны. Через каждую из них проведено по плоскости, которые пересекаются по прямой с. Как расположена прямая с по отношению к прямым а и b?

а) параллельно +

б) пересекает

в) перпендикулярно

3. Прямая а лежит в плоскости. Как расположена относительно плоскости прямая b, если b параллельна а?

а) перпендикулярно

б) параллельно +

в) пересекает

4. Сколько плоскостей можно провести через две данные точки?

а) одну

б) две

в) много +

5. Если одна из двух параллельных прямых пересекает плоскость, то другая прямая

а) параллельна плоскости

б) пересекает плоскость +

в) перпендикулярна плоскости

7. Точка А принадлежит плоскости α, точка В не принадлежит плоскости α. Принадлежит ли плоскости середина отрезка АВ.


а) да

б) нет +

в) не всегда

8. Прямая а параллельна прямой в, а прямая в параллельна плоскости . Взаимное расположение прямой а и плоскости .

а) параллельны +

б) пересекаются

в) скрещиваются

г) совпадают +
Учащиеся выполняют тест. Пары обмениваются решениями и проверяют работы друг друга во время обсуждения этих вопросов вместе с учителем.
Критерии:

Всё правильно – 3 балла,
1, 2 ошибки– 2 балла,
3, 4 ошибки– 1 балл,
более 3 ошибок – 0 баллов.


A

В

С



З
В
адание 2
(3 балла) Плоскость проходит через сторону АС  АВС. Точки D и E - середины отрезков АВ и BC соответственно. Докажите, что DE  α.


Доказательство:

1. Точки D и E - середины отрезков АВ и BC соответственно 

2. DE – средняя линия (по определению)  DE АС (по свойству)  DE  α ( по признаку параллельности прямой и плоскости)

D




Е



А




С

α

Пары обмениваются решениями и проверяют работы друг друга, ученики по очереди объясняют свое решение во время обсуждения этих вопросов вместе с учителем.

Задание 4(3 баллов) - дополнительное


Доказательство:

Точки Е и F - середины отрезков АВ и СD 

EF – средняя линия трапеции 

EF  АD  EF  α (по признаку параллельности прямой и плоскости).


Блок – 4. Взаимное расположение в пространстве двух плоскостей.
Цель блока:

- повторить и обобщить знания по теме взаимное расположение в пространстве двух плоскостей;

- систематизировать полученные знания.
Актуализация опорных знаний. Проведем теоретическую разминку.

Учащиеся вспоминают учебный материал (при необходимости пользуются учебником) и составляют опорный конспект.

- Взаимное расположение в пространстве двух плоскостей.



α






β

α

β




β
α β

α и β - совпадают α  β
- Какие плоскости называются параллельными? (Две плоскости называются параллельными, если они не пересекаются)

- На практике в столовой, где встречаетесь с параллельными плоскостями? (Нарезка хлеба, при нарезке хлеба плоскость ножа остается в параллельных плоскостях. Газовая плита и кастрюли стоящие на ней. Плоскость газовой плиты должна быть параллельна плоскости пола (т.к. горизонтальной). Если это не будет выполнятся, жидкость из кастрюли будет выливаться.)

- Сформулируйте признак параллельности плоскостей в пространстве. (Если две пересекающиеся прямые одной плоскости параллельны двум прямым другой плоскости, то эти плоскости параллельны.)

- Сформулируйте свойства параллельных плоскостей.

1. Если плоскость пересекает две параллельные плоскости, то прямые пересечения параллельны.

2. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.
Задание 1 Тест. Учащиеся получают задание и выполняют его самостоятельно.

1. Плоскость α параллельна прямой в, а прямая в параллельна плоскости . Взаимное расположение плоскостей α и .

а) параллельны +

б) пересекаются +

в) совпадают +

2. Плоскость  пересекает плоскости α и β по параллельным прямым а и в. Взаимное расположение плоскостей α и β.

а) параллельны +

б) пересекаются +

в) совпадают

3. Каждая из плоскостей α и β параллельна плоскости . Взаимное расположение плоскостей α и β.

а) параллельны +

б) пересекаются

в) совпадают

4. Каждая из плоскостей α и β параллельна прямой а. Взаимное расположение плоскостей α и β.

а) параллельны +

б) пересекаются +

в) совпадают +
Учащиеся выполняют тест. Пары обмениваются решениями и проверяют работы друг друга, ученики по очереди устно объясняют свое решение.